

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

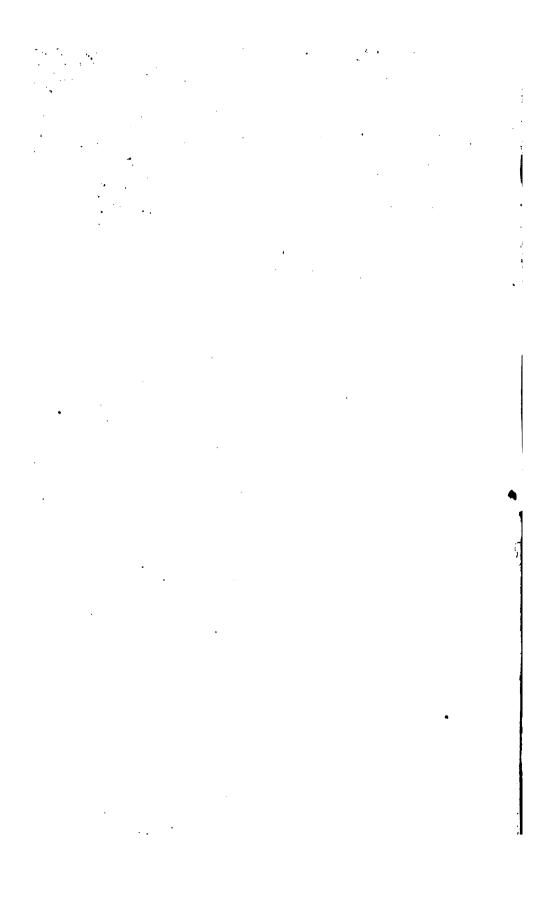
Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.


About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

2 to 15° 26, 9,425073 3 to 143, 10 717777 81 FI 84 1,924279 189.2 2,276987 10,000000 C4,90 9,562196 362024 Jo 4 18-9, 2 1.839733 5pt = 860 50 = 14000

Sugar Sally Some

The Section of

1, 2, 1, 1832.

Mandales of A. M. Samuel .

COMPLETE KEY

TO

GUMMERE'S SURVEYING;

IN WHICH

THE OPERATIONS OF ALL THE EXAMPLES,

NOT SOLVED IN THAT WORK,

ARE EXHIBITED AT LARGE

PRINCIPALLY DESIGNED

TO FACILITATE THE LABOUR OF TEACHERS,

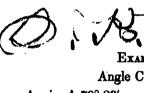
AND TO ASSIST THOSE

WHO HAVE NOT THE OPPORTUNITY OF THEIR INSTRUCTION.

BY SAMUEL ALSOP.

PHILADELPHIA:

PUBLISHED BY KIMBER & SHARPLESS, NO. 50, NORTH FOURTH STREET.


				1
				4
2				
				1
			•	ı
				1
				1
	,			1
		•		
				ł
				1
				1
				1
				l l
				1
				1
Pennsylvania.				
				ı
				1
				H
				H
	0			I
			•	li I
				i i
				l
•				
STEREOTYPED BY	J. FAGANPHIL	ADELPHIA.		

ΚĖΥ

TO

GUMMERE'S SURVEYING.

PLANE TRIGONOMETRY.

To BC 82 - - -

Ex	AMPLE	3. ((PL	1, fi	g. 1.)
ngle	C=18	0°-	-A	-B=	-46°	15'

DAME 22 00 (12 1, 18. 1.)							
Angle $C=180^{\circ}-A-B=46^{\circ}$ 15'.							
As sin. A 79° 23' Ar. Co. 0.00750							
Is to sin. B 54° 22′ 9.90996							
So is BC 125 2.09691							
To AC 103.4 2.01437							
Again,							
As sin. A Ar. Co. 0.00750							
Is to sin. C 46° 15′ 9.85876							
So is BC 2.09691							
To AB 91.87 1.96317							
Example 4. (Pl. 1, fig. 2.)							
Angle C=90°—A=33° 12′.							
As sin. C 33° 12′ Ar. Co. 0.26157							
Is to sin. B 90 10.00000							
So is AB 53.66 1.72965							
To AC 98 1.99122							
As sin. C Ar. Co. 0.26157							
Is to sin. A 56° 48' 9.92260							
So is AB 1.72965							

PLANE	TRI	GON	ОМЕ	TRY.	[Case 2.			
T	×	/D1 ·	· · · ·					
		-	l, fig. 5	•				
Angle	C=90	0°—A	=50°	50′.	_			
As sin. A 39° 10′ -				Ar. Co.	0.19957			
Is to sin. B 90°					10.00000			
So is BC 407.37 -					2.60999			
To AC 645					2.80956			
As sin. A				Ar. Co.	0.19957			
Is to sin. C 50° 50' -					9.88948			
So is BC					2.60999			
To AB 500.1	• -				2.69904			
	CA	SE 2.						
Exam	PLE 3.	(PL	, fig. :	l.)				
As AC 306				Ar. Co.	7.51428			
Is to AB 274					2.43775			
So is sin. B - 78°	18' -				9.99075			
To sin. C 61	14 -				9.94278			
139	27							
A 40 3	 33							
As sin. B 78° 13' -				Ar. Co.	0.00925			
Is to sin. A 40° 33'					9.81299			
So is AC 306			·		2.48572			
To BC 203.2					2.30796			
Example 4. (Pl. 1, fig. 2.)								
As AC 272				Ar. Co.	7.56543			
Is to AB 232					2.36549			
So is sin. B - 90°					10.00000			
To sin. C 58° 8	32′ -				9.93092			
A 31° 5	28′				. – .			

LSE	3.]	PΙ	ΑN	E	ТR	IG	O N	O N	Œ'	тR	Y		
	As sin. B -						-	_	-	A	r. (Co.	0.00000
	Is to sin. A		28'				-				_		9.71767
	So is AC -	-	-	-			-	-	-	-	-	-	2.43457
	To BC 142	-	-	-		. .	-	-	-	-	-	-	2.15224
			Ex	AMP	LIE :	5. (Pl. 1	l, fi	g. 2	2.)			
	As AC 150			-	- •		-	-	-	A	r. (Co.	7.82391
	Is to BC 69						-	-	-	-	-	-	1.83885
	So is sin. B	-	90°	٠.	•		-	-	-	-	-	•	10.00000
	To sin. A	-	27°	23′	•		-	-	-	•	-	-	9.66276
	C	-	62°	37′									
	As sin. B -	-	-	_			-	-	_	A	r. (Co.	0.00000
	Is to sin. C	62°	37'				-	-	-	-	-	-	9.94839
	So is AC -	-	-	-	-		-	-	•	-	-	-	2.17609
	To AB 133	.2	•	•			-	-	-	-	. -	-	2.12448
					C	ASI	E 3.	•					
			Ex	AMP	LE :	2. (Pl. 1	l, fi	g. 8	B.)			
			$\frac{A+}{2}$	<u>C</u> =	18	0° <u>–</u>	<u>-B</u> _	= 3 9	° 1.	5′			
	As AB+BC		5								r. (Co.	7.73283
	Is to AB-I					- -	-	-	-	-	-	-	1.51851
	So is tang.					9° 1		-	-	-	-	-	9.91224
	To tang.	<u></u>	<u>A</u>	-		8° 1	8′	-	-	-	-	-	9.16358
			~		4	7° 3	3′						
		(C	•	_								
	As sin. A 30			•	<u> </u>	· •	-	-	-	A	r. (o.	0.28879
	As sin. A 30 Is to sin. B	0° 5	7'				- :	-	-	A:	r. (-	0.28879 9.99119
		0° 5 101'	7'			· •	 - - -	- -	-	A :	r. (- -	Co. - -	

6 PLANE TRIGONOMETRY. [Case 4.
Example 3. (Pl. 1, fig. 2.)
$\frac{C+A}{2} = \frac{180^{\circ} - B}{2} = 45^{\circ}$
2 2 As AB+BC 1677 Ar. Co. 6.77547
Is to AB—BC 103 2.01284
So is tang. $\frac{C+A}{2}$ 45° 10.00000
So is tang. 2 45 10.00000
To tang. C-A - 3° 31' 8.78831
C 48° 31'
As sin. A 41° 29′ Ar. Co. 0.17888 Is to sin. B 90 10.00000
So is BC 787 2.89597
To AC 1188 3.07485
CASE 4.
Rule 1.
Example 2. (Pl. 1, fig. 4.)
As AB 64 Ar. Co. 8.19382
Is to AC+BC 81 1.90849
So is AC—BC 13 1.11394
To AD—BD 16.45 1.21625
Half difference - 8.225
½ AB 32
AD 40.00F
AD 40.225
DB 23.775
As AC 47 Ar. Co. 8.32790
Is to AD 40.225 1.60449
So is sin. D 90° 10.00000
To sin. ACD 58° 51' 9.93239
A 31° 9

CASE 4.] PLANE TRIGONOMETRY.	7
As BC 34 Ar. Co. 8.46852 Is to BD 23.775 1.37612 So is sin. D 90° 10.00000	_
To sin. BCD 44° 22' 9.84464	
B 45 38	
Also ACB=ACD+BCD=103° 13'	
Example 3. (Pl. 1, fig. 4.)	
As AB 108 Ar. Co. 7.96658 Is to AC+BC 142 2.15229 So is AC—BC 84 1.53148	
To AD—BD 44.70 1.65035	
Half difference - 22.35	
AD 76.35	
BD 31.65	
As AC 88 Ar. Co. 8.05552 Is to AD 76.35 1.88281 So is sin. D - 90° 10.00000 To sin. ACD - 60° 11′ 9.93833 A - 29° 49′	
As BC 54 Ar. Co. 8.26761 Is to BD 31.65 1.50037 So is sin. D - 90° 10.00000 To sin. BCD - 35° 53′ 9.76798 B - 54° 7′	
ACB=ACD+DCB=96° 4'.	

8 PI	LANE	TRIGONOMET	RY.	[Case 4.
		Rule .		
	EXAME	PLE 2. (Pl. 1, fig. 4	.)	
AC	47			
AB	64	Ar. Co.	8.19382	l
BC	34	Ar. Co.	8.46852	
:	2)145			
Half sum	72.5		1.86034	
Difference	25.5		1.40654	
		2)1	9.92922	
C	os. ½ B	22° 49′	9.96461	
	В	45° 38′		
	Exami	PLE 3. (Pl. 1, fig. 4	.)	İ
AB	108			
BC	54	Ar. Co.	8.26761	
AC	88	Ar. Co.	8.05 55 2	
	2)250			_
Half sum	125		2.09691	·
Difference	17		1.23045	
		2	19.65049	
Cos	L I C	48° 2′	9.82524	
	C	96° 4′		
			-	
RI	GHT A	NGLED TRIAN	GLES.	
		First Method.		
	Exam	PLE 3. (Pl. 1, fig. 4	5.)	
Making AC rad	ius, CB	is sine of A, and A	AB is cos. A	; hence,

,

RIGH	Т	Αl	N G	LI	E D	Т	RI	AN	G	LE	s.		9
As radius Is to sin. A 27° So is AC 36.57		-	-	-	-	-	-	-	A :	r. (Co. -	0.00000 9.66827 1.56312	
To BC 17.04	-	-	-	-	-	-	-	-	-	-	-	1.23139	
And,												•	
As radius	-	-	-	•	-				A	r. (Co.	0.00000	į
Is to cos. A -	-	-	-	-	-	-	-	-	-	-	-	9.94687	
So is AC	-	-	-	-	-	-	-	-	-	-	-	1.56312	
To AB 32.36	-	-	-	-	-	-	-	-	-	-	-	1.50999	
	Ex	MA	PLE	4.	(P	L 1	, fi	g. {	5.)				
Making AC radius A; hence,					-			_	•	d A	ΙВ	the cosine	e of
As sin. A 42° 9'		-	-	-	-	-	-	-	A	r. (Co.	0.17323	
Is to radius -	-	-	-	-	-	-	-	╼`	-	-	-	10.00000	
So is BC 193.6	-	-	•	•	-	-	-	-	-	-	-	2.28691	
To AC 288.5	-	-	-	-	-	- .	-	-	-	-	-	2.46014	
And,													i
As sin. A	-	-	-	-	-	-	-	-	A	r. (o.	0.17323	Ì
Is to cos. A -	-	-	-	-	-				-	-	-	9.87005	
So is BC	-	-	- .	-	-	-	-	-	-	-	-	2.28691	
To AB 213.9	-	-	-	-	-	-	-	-	-	-	-	2.33019	
•	Ex	AM	PLE	5.	(P	l. 1	, fi	g. 6	3.)				
Making the base A secant of A; hence,					•			_	•	tan	ge	nt, and AC	the
As AB 46.72	- ,	-	-	-	-	-	-	-	A	r. (Co.	8.33050	l
Is to BC 57.9	-	-	-	-	-		-	-	-	-	-	1.76268	.
So is rad	-	-	-	-	-	-	-	-	-	-	-	10.00000	
To tang. A 51°	6′	-	-	-	-	-	-	-	•	-	-	10.09318	
And,													
As rad	-	-	-	-	-	-	-	-	A	r. (o.	0.00000	
Is to secant A	-	-	-	•	-	-	-	-	-	-	-	10.20207	
So is AB	-	-	-	-	-	-	-	-	-	-	-	1.66950	
To AC 74.4 -	-	-	-	-	-	-	-	-	•	-	-	1.87157	

10 PLANE TRIGONOMETRY.						
Second Method.—By Logarithms.						
Example 3.						
Hypothenuse 403 Base 321						
Sum 724 log. 2.85974						
Difference 82 " 1.91381						
2)4.77355						
Perpendicular 243.65 2.38677						
Example 4.						
Perpendicular 27.2 log. 1.43457						
Base 31.04 1.49192 1.49192						
23.835 1.37722						
54.875 1.73937						
2)3.23129						
Hypothenuse 41.27 1.61564						
APPLICATION OF PLANE TRIGONOMETRY TO THE MENSURATION OF DISTANCES AND HEIGHTS. EXAMPLE 1. (See fig. 54, Surveying.) Angle C=180°—A—B=56° 23'. Fo find AC: As sin. C 56° 23' Ar. Co. 0.07948 Is to sin. B 49° 23' 9.88029 So is AB 500 yards 2.69897 To AC 455.8						
To AC 455.8 2.65874						

HEIGHTS AND DISTANCES.	11
To find BC:	
As sin. C Ar. Co	0.07048
	9.98834
So is AB	
•	
To BC 577.8	- 2.76179
Example 2. (Fig. 55, Surveying.)	
As BC+AC 1575 Ar. Co	6.80272
	- 2.02119
So is tang. $\frac{A+B}{2}$ 62° 10′	- 10 97738
. 	
To tang. $\frac{A-B}{2}$ 7° 12′	9.10129
B 54° 58'	
D 94 98	
As sin. B Ar. Co	. 0.08681
As sin. B Ar. Co	- 9.91686
So is AC 735	- 2.86629
To AB 741.2	2.86996
Example 3. (Fig. 56, Surveying.)	
, ,	101
Angle CAD=180—ADC—ACD=31°	10
To find AC:	0.00000
As sin. CAD 31° 10′ Ar. Co	Y
	- 9.90518 - 2.47712
50 IS CD 300	- 2.47712
To AC 465.98	- 2.66837 =====
Arrela CRD 100 DCD DDC 900	
Angle CBD=180—BCD—BDC=22°	อย
To find CB:	0.40055
•	0.40961
. Is to sin. CDB 98° 45'	- 9.99492
So is CD	2.47712
To CB 761.47	2.88165

12 PLANE TRIGONOMETRY.	
To find AB:	
As BC+AC 1227.45 Ar. (Co. 6.91100
Is to BC—AC 295.49	- 2.47054
So is tang. $\frac{\text{CAB} + \text{CBA}}{2}$ - 71° 30′	- 10.47548
To tang. CAB—CBA - 35° 44′	- 9.85702
CBA - 35° 46′	
- 	
As sin CBA Ar. (Co. 0.2332 3
Is to sin. BCA 37°	- 9.77946
So is CA 465.98	- 2.66837
To AB 479.8	- 2.68106
·	
Example 4. (Fig. 57, Surveying.)	
To find C:	
AB 8	
-	9.69897
	9.74478
2)6.8	
Half sum 3.4	0.53148
Difference 4	1.60206
2)19.57724
Cos. \(\frac{1}{2}\) C - 52° 4'	9.78862
C - 104° 8′	
To find BD:	
	Co. 0.51510
Is to sin. C 104° 8′	- 9.98665
So is BC 1.8	- 0.25527
To BD 5.715	0.75702

HEIG	HTS AND	DISTANCE	s. 13							
To find CD:										
As sin. D -		Ar.	Co. 0.51510							
Is to sin. DBC			- 9.92881							
So is BC			- 0.25527							
77 CTD # 000			0.00010							
To CD 5.002 -			- 0.69918							
Example 5. (Fig. 58, Surveying.)										
To find BAC:										
BC			0.00000							
AB AC		Ar. Co.								
AC		Ar. Co.	9.0909 I							
	27.2									
Half sum	13.6		1.13354							
Difference	6.4		0.80618							
		2)19.95745							
Cos. ½ B.	AC 17° 47′		9.97872							
В	AC 35° 35'									
To find AE:		•								
As sin. AEB 18	260	Ar.	Co 0.15999							
Is to sin. EBA			- 9.51264							
So is AB 12 -			- 1.07918							
·										
To AE 5.624 -			- 0.75005							
To find ACE:										
As AC+AE 13	8.624	A-	Co. 8.86560							
Is to AC—AE		211.	- 0.37585							
So is tang. AEC	+ACE	240 4011								
So is tang.	2	84° 42′½	- 11.03329							
To tang. AEC	— <u>ACE</u>	32 11	- 10.27483							
	AEC - 1	46 44								
	ACE -	22° 41′								

14 PLANE TRIGONOMETRY.	
To find AD:	
As sin. ADC 19° Ar. Co.	0.48736
	9.58618
So is AC 8	0.90309
To AD 9.476	0.97663
To find CD:	
As sin. ADC Ar. Co.	0.48736
Is to sin. DAC 138° 19'	9.82283
So is AC	0.90309
To DC 16.34	1.21328
To find BD:	
As sin. ADB 44° Ar. Co.	0.15823
Is to sin. BAD 102° 44'	9.98919
So is AB 12	1.07918
To DB 16.85	1.22660
Example 6. (Fig. 59, Surveying.)	
To find ABC:	
AC 46	
AB 50 Ar. Co. 8.30103	
BC 40 Ar. Co. 8.39794	
2)136	
Half sum 68 1.83251	
Difference 22 1.34242	
2)19.87390	
Cos. ½ ABC 30° 8′ 9.93695	
ABC 60° 16′	
	•

HEIGHTS AND DISTANCES.	15										
To find CD and CE:											
As sin. ADC 60° 16′ Ar. Co. 0.06131											
Is to radius 10.00000											
So is AC 46 1.66276	:										
To CD 52.98 1.72407											
$CE = \frac{1}{2} CD = 26.49$											
Also CAE=90°—ADC=90°—ABC=29° 44′.											
Example 7. (Fig. 61, Surveying.)											
Making DE radius, EC is tangent of D; hence,											
As radius Ar. Co. 0.00000											
Is to tang. D 47° 30′ 10.03795											
So is DE 100 2.00000											
To EC - 109.13 2.03795											
EB - 5											
BC - 114.13											
Example 8. (Fig. 62, Surveying.)											
To find DC:											
As sin. ACD 25° Ar. Co. 0.37405											
Is to sin. CAD 26° 30′ 9.64953											
So is AD 75 ft 1.87506	•										
To DC 79.18 ft 1.89864											
To find BC:											
As radius Ar. Co. 0.00000											
Is to sin. CDB 51° 30′ 9.89354											
So is CD 1.89864											
To CB 61.97 ft 1.79218											
Example 9. (Fig. 63, Surveying.)											
To find DC:											
As sin. ACD 23° 50′ Ar. Co. 0.39354											
Is to sin. CAD 44° 9.84177	.										
So is AD 134 2.12710											
To DC 230.4 2.36241											

•

16 PLANE TRIGONOMETRY.	
To find CE:	
As sin. CED 141° Ar. Co.	0.20113
Is to sin. CDE 16° 50'	9.46178
So is CD	2.36241
To CE 106	2.02532
To find EB:	
As radius Ar. Co.	0.00000
Is to sin. CDB 67° 50'	9.96665
So is CD	2.36241
To CB 213.3	2.32906
CE 106	
BE 107.3	
_	
Example 10. (Fig. 64, Surveying.)	
To find BD:	
As sin. CDB 17° 15' Ar. Co.	0.50701
As sin. CDB 17-13 Ar. Co. Is to sin. BCD 23° 45'	9.60503
So is CB 60	1.77815
S0 is CD 00	1.77010
To BD 81.49	1.91109
To find AD:	
As BD+BA 121.49 Ar. Co.	7.91546
Is to BD—BA 4449	1.61794
So is tang. $\frac{\text{BAD} + \text{BDA}}{2}$ - 69° 30′	10.42726
To tang. BAD_BDA - 42° 25'	9.96066
BDA - 27° 5'	
As sin. ADB 27° 5′ Ar. Co.	0.34172
Is to sin. ABD 41°	9.81694
So is AB 40	1.60206
To AD 57.64	1.76072

•

•

HEIGHTS A	ND	DISTA	NCES
-----------	----	-------	------

		E	CAMP	LE	11.	(F	ig.	68	5, S	urv	eyi	ng.)	
То	find AD: As sin. C Is to sin. So is CI	ACI	D 1								- A - -	lr. - -		0.34295 9.82551 2.12057
	To AD	•		•				•	•		-	-		2.28903
То	find AB:										٠		_	
	As sin. A				•	•	-	-	-	•	A	۱r.		0.02433
	Is to sin.			0	•	•	•	-	-	•	-	•	-	9.14356
	So is AI) -	•	•	•	-	-	-	-	-	-	•	•	2.28903
	To AB	28.64	-	╺.	•	<u>.</u>	•	-	•	-	-	-	-	1.45692
То	find C:							_		_	4	۱r.	Co.	8.00000
	Is to AE					_			_		_		•	1.53148
	So is rac		•	-	-	-	-	-	•	-	-	-	-	10.00000
	To tan.	C 18	° 47	"	-	•	-	•	-		-	•	•	9.53148
То	find AE=												_	
	As sin. A		37	3	4′	-	-	-	-	-	4	٩r.		0.21490
	Is to rad		-	-	-	-	-	-	:	•	-	•	•	10.00000
	So is Al	3 34	•	•	•	•	-	-	- .	-	-	•	•	1.53148
	To AE		•	•	55	.77		-	-	-	•	-	•	1.74638
					100)								
	B	E -		-	44	.23								

Otherwise.

 $AC^2 = AB^2 + BC^2 = 11156$.

And since the triangles CDE and CBA are similar, we have CB: CA: CD (½ CA): CE.

whence $CE = \frac{CA^2}{2CB} = \frac{11156}{200} = 55.78$ and BE = CB - CE = 44.22

PRACTICAL QUESTIONS.

Example 1. (Pl. 1, fig. 2.)

Maki	ng A	TD	rac	uus	, Б	U 1	s ta	ung	ent o	IA.	
As radius	-	•	•	-	-	-	-	•	Ar.	Co.	0.00000
Is to tang. A											
So is AB 85	•	-	•	-	-	-	•	•	-		1.92942
To BC 110.8	-	-	• .	_		-	-				2.04444

Example 2. (Pl. 1, fig. 2.)

Make AB radius, then will BC be the tangent and AC the secant of A; hence,

Ar. Co. 0.00000

Is to tang. A	61° 45	, .	 -	-	-	-	-	-	10.26977
So is AB 73	 ,	•	 •	•	-	-	-	•	1.86332
To BC 135.9		•	 -	•	-	•	•	-	2.13309

And,

As radius -

As radius	-	-	-	-	-	-	-	-	-	A	r. (‰	0.00000
Is to secant	A	-	-	-	-	-	-	-	•	•	-		10.32485
So is AB.	-	-	•	-	•	.,-	•	•	-	•	•	-	1.86332
M- AC 154													0.10017

Example 3. (Pl. 1, fig. 7.)

To find BD. We have in the triangle ABD, the angles and side AB. Hence,

As sin. ADB 31° -	-	-		-	•	-	Ar. Co.	0.28816
Is to sin. BAD 100°	-	-	-	-	-	•		9.99335
So is AB 339	-	-	-	•	-	-		2.53020

To BD 648.2 - - - - - - 2.81171

2.72175 ------2.84364

Again, in ABC we have the angles, and side AB, to find BC. Thus,
As sin. ACB 22° 30' Ar. Co. 0.41716
Is to sin. BAC 36° 30′ 9.77439
So is AB 339 2.53020
To BC 526.9 2.72175
In DBC we have the sides DB and BC, and included angle DBC=72°. To find the side DC. Thus.
$BCD + BDC = 180^{\circ} - 72^{\circ} = 108^{\circ}$.
Then,
As BD+BC 1175.1 Ar. Co. 6.92992
Is to BD—BC 121.3 2.08386
So is tang. BCD+BDC 2 - 54° 10.13874
To tang. BCD—BDC - 8° 5' 9.15252
BDC 45° 55'
====
And,
As sin. BDC 45° 55' Ar. Co. 0.14368
Is to sin. DBC 72° 9.97821

This example might have been solved by finding AD=496.76, AC=759.33; whence the angle ADC would be found to be 76° 55′, and CD=697.65, as before.

So is BC

To CD 697.65

Example 4. (Pl. 1, fig. 8.)

Construction.

With the given distances construct the triangle ABC. Make ACE and CAE respectively equal to 13° 30′ and 29° 50′. About the triangle AEC describe the circle ACD. Join EB, and produce it to meet the circumference in D, which will be the situation of the observer.

Since the angles ADE and ACE are subtended by the same arc, we have ADE=ACE=13° 30′. Also CDE=CAE=29° 50′.

20 P	LANE	TRIGONOM	ETRY.	_
		Calculation.		
In the triangle	ABC. we	have the thre	e sides to find the ang	le
BAC. Thus,	,			,
BC	262			
AC	404	Ar. Co.	7.39362	
AB	213	Ar. Co.	7.67162	
	2)879			
Half sum	439.5		- 2.64296	
Difference	177.5	·	- 2.24920	
			2)19.95740	
Cos.	3 BAC	17° 48′	- 9.97870	
ŧ	BAC	35° 36′		
As sin. AEC Is to sin. AC So is AC 404 To AE 137.4 In the triangle included angle BA As AB+AE Is to AB—A So is tang. To tang.	136° 40 E 13° 3 4 43 ABE w E=BAC 350.43 E 75.57 AEB+A 2 B—ABI 2	e have the side the side that	and side AC, to find AE - Ar. Co. 0.16352 9.36819 2.60638 2.13809 les AB and AE, and the control of the con	he :
	—13° 30′ 13° 30′ D 25° 1 3	0'=25° 14'. T	=141° 16', ADB=13° 36' of find AD and DB: - Ar. Co. 0.63181 9.62972 2.32838 2.58991	υ΄,

PRACTICAL QUESTIONS. 21											
And, As sin. ADB 13° 30′ Ar. Co. 0.63181 Is to sin. ABD 141° 16′ 9.79636 So is AB 213 2.32838 To AD 570.9 2.75655											
10 110 010.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Finally, in ADC we have the angle ADC=43° 20′, CAD=BAC-BAD=60° 50′ and the side AC; to find CD. Thus,											
As sin. ADC 43° 20′ Ar. Co. 0.16352 Is to sin. CAD 60° 50′ 9.94112 So is AC 404 2.60638											
To CD 514.1 2.71102											
This might have been solved by finding ACB = 28° 14', CE = 292.87 , whence CBE would have been found to be = 77° 26', BD = 388.9 , DC = 514 , and AD = 570.8 .											
Example 5. (Pl. 1, Fig. 9.)											
Here $AD = \sqrt{BD^2 - AB^2} = \sqrt{1296} = 36$. And $AC = AD + DC = 75$ Ans.											
Or, Trigonometrically;											
As BD 39 Ar. Co. 8.40894 Is to BA 15 1.17609 So is radius 10.00000 To cos. B 67° 23′ 9.58503											
And,											
As radius Ar. Co. 0.00000 Is to sin. B 67° 23′ 9.96525 So is BD 39 1.59106 To AD 36 1.55631											
AC - 75											

EXAMPLE 6. (Pl. 1, fig. 10.)	
The angle $ACB = DBC - DAC = 25^{\circ}$.	
Then, As sin ACB 25° Ar. Co.	0.00462
ten a am	9.64953
So is AB 75	1.87506
To BC 79.18	1.89864
To find CD, and BD:	
As radius Ar. Co.	0.00000
Is to sin. B 51° 30′	9.89354
So is CB	1.59864
To CD 61.97	1.79218
and,	
As radius Ar. Co.	0.00000
Is to cos. B	9.79415
So is CB	1.89864
To BD 49.29	1.69279
Example 7. (Pl. 1, fig. 11.)	•
Here ACB = CAD = 35° and BAC = 55°	•
Hence.	
As rad Ar. Co.	0.0000
	0.00000 10.15477
So is AB 143	2.155 34
SU 15 AD 145	<i>4</i> ,10004
To BC 204.2	2.31011

Example 8. (Pl 1, fig. 12.)

Construction.

Make AB=76, the distance from the lower column to the statue's base. Erect the perpendiculars AD and BF, making the former=50. With D as a centre and distance 86, cross BF in F, which will be the head of the statue.

1

Make AI = 64, draw IE parallel to AC, with F as a centre and distance 97, cross IE in E, then EC perpendicular to AC, will be the higher column.

	Calc	ulat	ion	•				•	·
То	find FDG and side DG:								
- •		-	•	-	-	Ar	. Co). 1	8.06550
	Is to FG 76	-	-	•	-	•	•	•	1.88081
	So is radius	-	-	-	•	•	-	1	0.00000
	To sin. FDG 62° 51'	-	-	-	-	. -	-		9.94631
	As radius			-	•	Ar	. Co). (0.00000
	Is to cos. FDG 62° 51' -	-	-	-	-	-	-	- 1	9.67030
	So is FD 86	•	•	-	•	•	•	•	1.93450
	To DG 40.25	•	•	•	•	•	•	-	1.60480
	Fo find EFH and FH, we ha =54.25. Hence,	ve	FE	: =	97	and	E	H =	GI = GD +
<i>J</i> 1-	·					A			0.61.000
	As EF 97 Is to EH 54.25								
	So is radius	-	•	-	•	•	•		1.73440 0.00000
	CO 15 Taurius	•		-	•	•	•		
	To sin. EFH 34°	•	•	-	-	•	•	- !	9.74763
And	d ,								
	As radius	-	-	-	-	Ar	. C	0. (0.00000
	Is to cos. F 34°	-	-	•	-	-	-	- '	9.91857
	So is EF 97	-	-	•	-	-	•	•	1.98677
	To FH 80.42	-	-	-	-	•	-	•	1.90534
	To find ED, we have EI = nce,	H	F+	F(}=	15	6.4%	3 a	nd DI=14
			-	•	-	Ar	. C) . '	7.80571
	Is to ID 14	-	-	•	-	-	-	-	1.14613
	So is radius	-	-	•	-	-	•		0.00000
	To tan. 170 5° 7′		-	-	•	-	-	-	8.95184
	-								

PLANE TRIGONOMETRY.

As rad	•	-	-	•	-	-	-	A :	r. (o.	0.00000
Is to sec. E 5° 7	•	-	-	-	-	-	-	-	•	-	10.00173
So is IE 156.42	•	-	-	•	•	•	-	-	-	-	2.19429
To ED 157.04	-	_		-	-	_	-	-	-		2.19602

Otherwise.

$$GD = \sqrt{FD^3 - FG^3} = \sqrt{1620} = 40.25.$$

$$GI = GD + DI = 54.25.$$

$$FH = \sqrt{FE^2 - EH^2} = \sqrt{6465.9375} = 80.41.$$

$$IE = FH + FG = 156.41.$$

$$DE = \sqrt{IE^2 + ID^2} = \sqrt{24660.0881} = 157.03$$
.

SURVEYING.

CHAPTER I.

DIMENSIONS OF A SURVEY.

PROBLEM 8.

Example 2.

Angle. $B = 34^{\circ} + 35^{\circ} = 69^{\circ}$.

EXAMPLE 3.

Here the first bearing must be reversed, since it is towards the station C. It becomes N. 35° W. Hence C=180°—(35°+87°)=58°.

EXAMPLE 4.

$$D = 180^{\circ} - (87^{\circ} - 58^{\circ}) = 151^{\circ}$$
.

PROBLEM 9.

Example 2.

1st side S. 40½° E.

N. 54 E.

941

180

N. 85 E.

4th N. 283° E.

N. 54 E.

N. 251 W

3d N. 29‡° E.

N 54 E.

N. 24‡ W

5th N. 57° W.

N. 54 E.

111 180

8 89 W

6th 4.7° W.

N. 54 E.

S. 7 I

26 SURVEYING.	[Снар. І.
Example 3.	
	N. 50° W.
S. 201 W.	S. 20½ W.
S. 25 W.	N. 701 W.
3d N. 0° W. 4th	N. 85° E.
S. 201 W.	S. 201 W.
N. 201 W.	N. 641 E.
5th S. 47° E. 7th	N. 51‡° W.
S. 20½ W.	S. 201 W.
S. 67½ E.	N. 711 W.
PROBLEM 10.	`
Example 1.	
As radius	Ar. Co. 0.00000
Is to cos. bearing 53° 20'	9.77609
So is distance 13.25	1.12222
To difference of latitude 7.912 N	0.89831
And,	
As radius	Ar. Co. 0.00000
Is to sin. bearing	9.90424
So is distance	1.12222
To departure 10.63 E	1.02646
Example 2.	
	Ar. Co. 0.00000
Is to cosecant bearing 32° 30'	10.26978
So is departure 10.96	1.03981
To distance 20.40	1.30959
And,	
As radius	Ar. Co. 0.00000
Is to cotangent bearing	10.19581
So is departure	1.03981
To difference of latitude 17.20	

EXAMPLE 3. As difference of latitude 34.43	PROB. 10.] DIMENSIONS OF A SURVE	Y. 27
As difference of latitude 34.43 . Ar. Co. 8.46306 Is to distance 44	_	
Is to distance 44		G 0.48888
So is radius		
To secant of bearing 38° 30′		
And, As rad		
As rad	To secant of bearing 38° 30'	- 10.10651
Is to tang. bearing 38° 30′	•	
EXAMPLE 4. As radius	 -	
EXAMPLE 4. As radius		
EXAMPLE 4. As radius	50 is diff. lat. 84.43	- 1.53694
As radius	To departure 27.39	- 1.43755
As radius	·	
Is to secant of bearing 32° 30′	Example 4.	
So is diff. of lat. 17.21		Co. 0.00000
To distance 20.41		- 10.07397
And, As radius Ar. Co. 0.00000 Is to tang. bearing 32° 30′ 9.80419 So is diff. latitude 17.21 1.23578 To departure 10.96 1.03997 EXAMPLE 5. As diff. of lat. 27.92 N Ar. Co. 8.55408 Is to departure 5.32 E 0.72591 So is radius 0.72591 So is radius 9.27999 And, As radius 9.27999 And, As radius 10.00774 So is diff. of lat 1.44592	So is diff. of lat. 17.21	- 1.23578
As radius	To distance 20.41	- 1.30975
Is to tang. bearing 32° 30′	And,	
EXAMPLE 5. As diff. of lat. 27.92 N Ar. Co. 8.55408 Is to departure 5.32 E 0.72591 So is radius 10.00000 To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	444	Co. 0.00000
EXAMPLE 5. As diff. of lat. 27.92 N	Is to tang. bearing 32° 30′	- 9.80419
EXAMPLE 5. As diff. of lat. 27.92 N Ar. Co. 8.55408 Is to departure 5.32 E 0.72591 So is radius 10.00000 To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	So is diff. latitude 17.21	- 1.23578
As diff. of lat. 27.92 N Ar. Co. 8.55408 Is to departure 5.32 E 0.72591 So is radius 10.00000 To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	To departure 10.96	- 1.03997
As diff. of lat. 27.92 N Ar. Co. 8.55408 Is to departure 5.32 E 0.72591 So is radius 10.00000 To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592		
Is to departure 5.32 E		• •
So is radius 10.00000 To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592		Co. 8.55408
To tang. bear. 10° 47′ 9.27999 And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	-	- 0.72591
And, As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	So is radius	- 10.00000
As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	To tang. bear. 10° 47'	- 9.27999
As radius Ar. Co. 0.00000 Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592	A J	
Is to secant of bearing 10° 47′ 10.00774 So is diff. of lat 1.44592		G- 00000
So is diff. of lat 1.44592	2111	
M- 1'-4 00 10		
To dist. 28.42 1.45366		- 1.44382
	To dist. 28.42	- 1.45366

•

	•			SU	JRV	EYII	NG.				[Сн	AP. I.
											.,	
					Exam	IPLE (3.					
	As dista						-	- A	.r. Co	. 8.4	5161	
	Is to de		ıre 1	5.08	-		-				7840	
	So is r	adius	•		•		•			10.0	0000	
	To sin.	bear	ing s	25° 18	5′		•			9.6	3001	
And		_							. ~			I
	As radi				151		-	- A	r. Co		0000	
	Is to co		_	; zo-			-				5639 4839	
						•						
	To diff.	of la	at. 3	1.97	-	• •	-			1.5	0478	
			•									
				זמ	ומסי	. 13.18.6°	10					
					KOBI	LEM	12.					
Sta	Courses.	Dist.	N.	S.	E.	w.	Cor. N.	Cor. E.	N.	S.	E.	W.
-	Car San and						411	Es				
1	N. 75 E.	13.70	3.54		13.24		2	2	3.56		13.26	
1 2		13.70	3.54 9.65		13.24 3.61			1	3.56 9.66		13.26 3.62	
_	N. 201 E.	1	1000				2	2	1000			
2	N. 201 E. East.	10.30	1000	29.44	3.61	19.49	2	2	9.66	29.39	3.62	19.44
2 3	N. 20½ E. East. S. 33½ W.	10.30	1000	29.44	3.61	19.49	2 1 2	1 2	9.66	29.39	3.62	19.44
3 4	N. 20½ E. East. S. 33½ W. S. 76 W.	10.30 16.20 35.30	1000	-	3.61		2 1 2 5	2 1 2 2 5	9.66		3.62	_
2 3 4 5	N. 20½ E. East. S. 33½ W. S. 76 W.	10.30 16.20 35.30 16.00	9.65	-	3.61		2 1 2 5 2	2 1 2 5 2	9.66		3.62	_
2 3 4 5 6	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W.	10.30 16.20 35.30 16.00 9.00	9.65	3.87	3.61	15.52	2 1 2 5 2	2 1 2 5 2 1 1	9.66	3.85	3.62	15.50
2 3 4 5 6 7	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W.	10.30 16.20 35.30 16.00 9.00 11.60	9.65	3.87	3.61	15.52	2 1 2 5 2 1 2 2	2 1 2 5 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1	9.66	3.85	3.62	15.50
2 3 4 5 6 7 8	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W. N. 53½ W.	10.30 16.20 35.30 16.00 9.00 11.60	9.65	3.87	3.61	15.52	2 1 2 5 2 1 2 2 2	2 1 2 5 2 1 2 2	9.66 .02 9.01	3.85	3.62 16.22 .01	15.50
2 3 4 5 6 7 8	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W. N. 53¼ W. N. 53¼ W.	10.30 16.20 35.30 16.00 9.00 11.60 11.60	9.65 9.00 6.94 15.51	3.87	3.61 16.20 11.59 5.36	15.52	2 1 2 5 2 1 2 2 3	2	9.66 .02 9.01 6.96	3.85	3.62 16.22 .01 .01 11.61 5.38	15.50
2 3 4 5 6 7 8 9	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W. N. 53½ W. N. 36¾ E. N. 22½ E.	10.30 16.20 35.30 16.00 9.00 11.60 11.60 19.35	9.65 9.00 6.94 15.51	1.21	3.61 16.20 11.59 5.36	15.52	2 1 2 5 2 1 2 2 2 3	2	9.66 .02 9.01 6.96	1.19	3.62 16.22 .01 .01 11.61 5.38	15.50
2 3 4 5 6 7 8 9 10	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W. N. 53½ W. N. 22½ E. S. 76½ E. S. 15 W.	10.30 16.20 35.30 16.00 9.00 11.60 11.60 19.35 14.00	9.65 9.00 6.94 15.51	1.21	3.61 16.20 11.59 5.36	15.52	2 1 2 5 2 1 1 2 2 3 3 2 2 2	2 1 2 2 2 2 2	9.66 .02 9.01 6.96	3.85 1.19 2.73	3.62 16.22 .01 .01 11.61 5.38	15.50
2 3 4 5 6 7 8 9 10	N. 20½ E. East. S. 33½ W. S. 76 W. North. S. 84 W. N. 53½ W. N. 22½ E. S. 76½ E. S. 15 W.	10.30 16.20 35.30 16.00 9.00 11.60 11.60 19.35 14.00 10.85	9.65 9.00 6.94 15.51	3.87 1.21 2.75 10.48	3.61 16.20 11.59 5.36 11.68	15.52 11.54 9.29 2.81	2 1 2 5 2 1 2 2 2 2 2 2	2 1 2 5 2 1 2 2 2 2 1 1	9.66 .02 9.01 6.96	3.85 1.19 2.73 10.46	3.62 16.22 .01 .01 11.61 5.38	15.50

Prob.	1.	

SUPPLYING OMISSIONS.

29

CHAPTER II. SUPPLYING OMISSIONS.

PROBLEM I. EXAMPLE 2.

Sta.	Courses.	Dist.	N.	s.	E.	w.
1	N. 15‡° W.	9.40	9.05			2.55
2	N. 63‡ E.	10,43	4.61		9.36	
3	S. 49 E.	8.12		5.33	6.13	
4	S. 13½ E.	8.45		8.22	1.98	
5	S. 16 ² E.	6.44		6.17	1.86	
6				(6.11)	}	(10.64)
7	N. 60 W.	9.72	4.86			8.41
8	N. 17‡ W.	7.65	7.31		2.27	
			25.83	25.83	21.60	21.60

Then,

I	As diff. lat. 6.11 S	-	-	-	-	-	Ar	: C o).	9.21396
1	Is to depart. 10.64 W.	-	-	-	-	-	-	-	-	1.02694
	So is radius	-	-	-	-	-	-	-	-	10.00000

To tang. bearing S. 60° 8' W. - - - - 10.24090

And, As radius - - - - - - - - - Ar. Co. 0.00000

Is to secant bearing 60° 8′ - - - - - 10.30279
So is diff. lat. - - - - - - - 0.78604

To distance 12.27 - - - - - - 1.08883

EXAMPLE 3.

Sta.	Courses.	Dist.	N.	8.	E.	w.
1	S. 52° W.	10.70		6.59		8.43
2	S. 7½ W.	13.92		13.80		1.82
. 3	8. 34‡ E.	9.00		7.44	5.07	
4		ĺ	(27.83)		(5.18)	
	et.,	·		27.83	10.25	10.25

30		SURV	EYIN	G.	[Снар. Ц.	
Then, As diff. lat. 27.83 Ar. Co. 8.55549 Is to departure 5.18 0.71433 So is radius 0.00000 To tang. bearing N. 10° 33′ E 9.26982 And, As radius Ar. Co. 0.00000 Is to secant bearing 10° 33′ 10.00740 So is diff. lat. 27.83 1.44451 To distance 28.31 1.45191							
		Exal	IPLE 4.				
Sta.	Bearing.	Dist.	N.	8.	E.	w.	
1	S. 10° E.	92.20		90.80	16.01		
2	S. 15 W.	120.50		116.39		31.19	
3	S. 18½ W.	205.00		194.40		65.05	
4	S. 71½ E.	68.00		21.58	64.49		
5							
				423.17	80.50	96.24 80.50 15.74	
Then, As diff. of latitude 423.17 Ar Co. 7.37348 Is to departure 15.74 1.19700 So is radius 10.00000 To tang. bearing 2° 8′ 8.57048 And, As radius Ar. Co. 0.00000 Is to secant bearing 2° 8′ 10.00030 So is diff. lat. 423.17 2.62652 To distance 423.47 2.62682							

Pro	ı. 3.]	SUPPL	YNG (MISSI	ons.		31		
			ROBLE						
Example 2.									
Sta.	Bearing.	Changed Bearing.	Dist.	N.	8.	E.	w .		
1	S. 40½ E.	N. 85½ E.	31.80	2.49		31.70			
2	N. 54 E.	North.		(2.08)					
3	N. 29½ E.	N. 24¾ W.	2.21	2.01			.93		
4	N. 28‡ E.	N. 25‡ W.	35.35	31.98			15.08		
5	N. 57 W.	S. 69 W.			(7.49)		(19.51)		
6	S. 47 W.	S. 7 E.	31.30		31.07	3.82			
				38.56	3 8. 5 6	35.52	35.52		
	As radius Ar. Co. 0.00000 Is to cosec. changed bearing 69° 10.02985								
	-	arture 19.5				- 1.29			
		ce 5th side	20.90			1.320			
And	l, As radius	ng bearing	 60° -	• • •	Ar. Co	o. 0.000 - 9.58			
		arture 19.5				- 1.29			
	•	atitude 7.49		,-		0.87	144		
		PI	ROBLE	M III.					
			Examp	LE 2.					
Sta.	Bearing.	Changed Bearing.	Dist.	N.	8.	E.	w.		
1	S. 40½ E.	N. 85½ E.	31.80	2.49		31.70			
2	N. 54 E.	North.		(2.09)					
3	N. 29‡ E.	N. 243 W.	2.21	2.01			.93		
4	N. E.		85.35	(31.97)			(15.08)		
5	N. 57 W.	S. 69 W.	20.90		7.49		19.51		
6	S. 47 W.	S. 7 E.	31.80		31.07	3.82			
				88.56	38.56	3 5.52	35.52		

32			SURV	VEYIN	[G .		[Снар. П			
]	hen, As distance 4th side 35.35 Ar. Co. 8.45161 Is to departure 15.08 1.17840 So is radius 10.00000									
•	To sine chang. bearing N. 25° 15′ W 9.63001									
	Bearing 4th side N. 28° 45′ E.									
]	And, As radius Ar. Co. 0.00000 Is to cos. chang. bearing 25° 15′ 9.95639 So is distance 1.54839									
	Fo ditt	E latitude 3:				· • •	1.50478			
		Ex		BLEM 1 . (Pl. 1,)				
		Bearing.	Dist.	N.	S.	E.	w.			
	FA	S. E.	31.80							
	AB	N. 54 E.	2.08	1.23		1.68				
	BC	N. 29‡ E.	2.21	1.92		1.08				
	CD	N. 28‡ E.	35.35	31.00		17.00	<u> </u>			
	DE	N. 57 W.	20.90	11.38			17.52			
I	EF	s. w.	31.30							
	Diff.	latitude of 1	EA	45.53		19.76 17.52	17.52			
Then	Departure of EA 2.24 Then, As diff. lat. EA 45.53 Ar. Co. 8.34170 Is to departure 2.24 0.35025 So is radius 10.00000									
	To tang. bearing EA 2° 49' 8.69195									

Door d. T. CONTENT OF LAND	99
PROB. 1.] CONTENT OF LAND.	33
And,	
As radius Ar. Co. 0.00000	
Is to secant bearing 2° 49' 10.00052 So is diff. lat 1.65830	
	
To distance EA 45.58 1.65882	
To find AEF:	
AF 31.89	
AE 45.58 Ar. Co. 8.34123 EF 31.30 Ar. Co. 8.50446	
2)108.68	
Half sum 54.34 1.73512	
Difference 22.54 1.35295	
2)19.93376	
Cos. 1 AEF 22° 6′ 9.96688	
AEF 44° 12′	
Bearing of EA - 2° 49'	
" EF S. 47° 1' W.	
To find EAF and bearing of FA:	
As AF 31.80 Ar. Co. 8.49757	
Is to EF 31.30 1.49554	
So is sin. AEF 44° 12′ 9.84334	
To sin. EAF - 43° 20′ 9.83645	
Bearing of EA 2° 49'	
" AF 40° 31'	
CHAPTER III.	
CONTENT OF LAND.	
PROBLEM I.	
Example 4.	
EXAMPLE 4. Here, Area = 176.4 × 176.4 = 31116.96 Sq. Perches, = 194 A. 1 R. 36.96 P.	

4	S	U	R	v	E	Y	ΙN	G

[CHAP. III.

EXAMPLE' 5.

Here, Area = $52.25 \times 38.24 = 1998.04$ Sq. Ch. = 199 A. 3 R. 8.64 P.

EXAMPLE 6.

Here, Area = $16.54 \times 12.37 = 204.5998$ Sq. Ch. = 20 A. 1 R. 33.5968 P.

EXAMPLE 7.

Here, Area = $21.16 \times 11.32 = 239.5312$ Sq. Ch. = 23 A. 3 R. 32.4992 P.

PROBLEM 2.

Example 2

Here, Area = $\frac{18.37 \times 13.44}{2} = \frac{246.8928}{2} = 123.4464$ Sq. Ch. = 12 A. 1 R. 15.1424 P.

EXAMPLE 3.

Here, Area = $\frac{49 \times 34}{2} = \frac{1666}{2} = 833$ Sq. Pe. = 5 A. 0 R. 33 Pe.

PROBLEM 3.

Example 2. (Pl. 1, fig. 1.)

As radius			-	-	-	Ar.	Co.	0.00000
Is to sin. A 47°	30' -		-	-	-		-	9.86763
So is AB × AC	(AB	15.36	-	-	-	-		1.18689
So is AB × AC	{ AC	11.46	-	-	-			1.05918
To double area	129.78	3	-	-	-			2.11320
		-						

ABC - 64.89 Ch. = 6 A. 1 R. 38. 24 P

Prob. 4.]	CONT	ENT OF LAND.	35
	EXAMP	LE 3. (Pl. 1, fig. 14.)	
Here	As radius	Ar. Co. 0.00000	
1	Is to sin. A 66° 30'-	9.96240	i
\$	So is $AB \times AC \begin{cases} AB \\ AC \end{cases}$	13.84 1.14114 18.23 1.26079	
	To 2 ABC 231.38		
	ABC - 115.69	Ch. = 11 A. 2 R. 11.04 P.	
	Examp	LE 4. (Pl. 1, fig. 15.)	
Here,	As radius	Ar. Co. 0.00000	
]	Is to sin. A 121°4	5' 9.92960	
	So is AB, AC	(AB 19.74 1.29535 (AC 17.34 1.23905	į
ľ	20 10 112, 110	(AC 17.34 <u>1.23905</u>	
'	To 2 ABC 291.07	2.46400	
	ABC - 145.535	Ch. = 14 A. 2 R. 8.56 P.	
	1	PROBLEM 4.	
	Exami	PLE 2. (Pl. 1, fig. 1.)	
	Here, Angle C =	= 180— $(A+B) = 43$ °. Hence,	
	As rad., sin. C	{ radius Ar. Co. 0.00000 sin. C 43° - Ar. Co. 0.16622	
ł		(sin. U 43° - Ar. Uo. 0.16622	
]]	Is to sin. A, sin. B	\(\begin{array}{cccccccccccccccccccccccccccccccccccc	
		(AB 24.32 1.38596	
1	So is AB ²	AB 1.38596	
	To 2 ABC 742.8	2.87086	
	ABC - 371.4 C	h. = 37 A. 0 R. 22.4 P.	
		Example 3.	
ł	Here, the a	ngle $C = 94^{\circ}$ 15'. Hence,	
ł	As rad., sin. C	frad Ar. Co. 0.00000	
1	As Iau, siii U	\(\) \(\)	
	Is to sin. A, sin. B	(sin. A 37° 30′ 9.78445 (sin. B 48° 15′ 9.87277	
	So is AB ²	(AB 17.36 1.23955 (AB 1.23955	
	To 2 ABC 137.25	2.13752	
	ABC - 68.625	Ch. = 6 A. 3 R. 18 P.	

36	SURVEYING.	[CHAP. III.

	PROBLEM 5.	
<u>.</u> 1	Example 2.	
Here, 10	9.64 + 12.28 + 9.00 = 31.92 = sum of	sides.
Half sum	15.96 log.	1.20303
	\$ 5.32	0.72591
Remainders	3.68	0.56585
	(6.96	0.84261
	:	2)3.33740
Area	10)46.63 Ch	1.66870
	4.663 = 4 A. 2 R. 26.08 P.	
	Example 3.	
Hen	re, $20+30+40=90=$ sum of sides.	
Half sum	45	1.65321
	(25	1.39794
Remainders	15	1.17609
	(5	0.69897
	\$	2)4.92621
:	10)290.47	2.46310
	29.047 A. = 29 A. 0 R. 7.52 P.	
	PROBLEM 6.	
	Example 2.	
Here, 1	$6.10 \times \frac{6.80 + 3.40}{2} = 16.1 \times 5.1 = 82.1$	1 Ch.
	= 8 A. 0 R. 33.76	
	Example 3.	
Here, 2	$4 \times \frac{8.27 + 12.43}{2} = 24 \times 10.35 = 248.4$	Ch.
	= 24 A. 3 R. 14.4 P.	

PROBLEM 7.

Example 2. (Pl. 1, fig. 16.)

Here	BEA	=	180°-	(A+B)	$=34^{\circ}$.	Hence,
------	-----	---	-------	-------	-----------------	--------

	(radius -	-	Ar. Co.	0.00000
As rad., sin. E	radius - sin. E 34°	-	4 4	0.25244
Is to sin. C, sin. D.	(sin. C 120°	-		9.93753
Is to sin. C, sin. D.	sin. D 94° -	-		9.99894
~ . ~~	CD 11 Ch.	-		1.04139
So is CD ² .	(CD	-		1.04139

To 2 CDE 186.93 - - - - - - 2.27169

And,

A 177 178	radius	-	AL CU	
As rad., sin. E	sin. E 34°	-	"	0.25244
Is to sin. A, sin. B	sin. A 65°	-		9.95728
is to sin. A, sin. is	sin. B 61°	-		9.99462
So is AB ²	AB 20 Ch.	-		1.30103
30 18 AD	AB	-		1.30103

To 2 ABE - 640.33 - - - - - 2.80640

2 CDE - 186.93

2 ABCD 2)453.40

ABCD 226.7 Ch. = 22 A. 2 R. 27.2 P.

Example 3. (Pl. 2, fig. 1.)

Here the angles are as follow, viz.

 $A = 111^{\circ} 30'$, $B = 45^{\circ}$, $C = 125^{\circ}$, $D = 78^{\circ} 30'$, and $E = 23^{\circ} 30'$.

Hence,

As rad, sin. E	sin.	E	23° 30	r'	44		46	0.39930
Is to sin. C, sin. D.	√ sin.	\mathbf{C}	125°		-	-	-	9.91336
So is CD ²	(CD	12	190 Ch		-	-	-	1.11059 1.11059
130 M CD	₹CD	-		-	-	-	-	1.11059

(radius - - Ar. Co. 0.00000

To 2 CDE 384.99 - - - - - - 2.52503

38	SURVEYING.	[CHAP. III.
And,	As rad. sin. E { radius Ar. Co. sin. E 23° 30 " " Is to sin. A, sin. B { sin. A 111° 30′	0.39930 9.96868 9.84949 1.36549 1.36549 2.94845
	PROBLEM 8.	
	Example 2. (Pl. 2, fig. 2.)	
And,	As rad Ar. Co. Is to sin. A 56°	9.91857 0.78888 0.92737 1.63482 0.00000 9.99520 6.92737 0.84510 1.76767 0.00000 9.63398 0.78888
	ABCD = 41.585 Ch = 4 A. 0 R. 25.3	36 P

1.24378

1.03342

2.27586

- 1.11126

- 2.08754

PROB. 9.7 Example 3. (Pl. 2, fig. 3.) Here, Angle $B = 94^{\circ} 30' \& C = 118^{\circ} 45$. Therefore, - Ar. Co. 0.00000 As radius -Is to sin. B 94° 30' (AB 17.53 -So is AB, BC BC 10.80 -First quantity 188.74 -As radius - - Ar. Co. 0.00000 Is to sin. C 118° 45′ ●-(BC 10.80 -- - - 1.03342 So is BC, CD CD 12.92 Second quantity 122.33 As radius Is to B+C-180 33° 15′ - -(AB 17.53 -So is AB, CD

- Ar. Co. 0.00000 - 9.73901

- - - 1.24378 CD 12.92 -

Third quantity 124.18 2.09405

Second 122.33 First 188.74 2)435.25

217.625 Ch. = 21 A. 3 R. 2 P.

PROBLEM 9.

Example 2.

Here, Area =
$$\frac{12.41 + 8.22}{2} \times 5.15 = 53.12225$$
 Ch. = 5 A. 1 R. 9.956 P.

Example 3.

Here, Area =
$$\frac{11.34 + 18.46}{2} \times 13.25 = 197.425$$
 Ch. = 19 A. 2 R. 38.8 P.

40	_		1 (0	12			VE			13030			Снар	
	S. Area.		407.1886	395.2677			384.7272	707.0700		1894,2535 177,1495	2)1717.1040	A. 85,8.5520	R. 3.42080	16.83200
	N. Area.				70,3228	16.3773			90.4494	177,1495 1894,2535	8			Ы
•	Mult.		23.66 W.	37.97 W.	19.48 W.	17.61 E.	51.92 E.	64.75 E.	35.61 E.			Area 85 A. 3 R. 16.832 P.		
	V. D. D.	35.61	23.66	14.31					29.14			85 A. S		*
	E.D. D. W. D. D.				18.49	37.09	34.31	12.83				Area		
	W.	6.46	17.20						29.15					
-1	E .			2.89	15.60	21.49	12.82	.01						
M 1 1 2 2.	vi	9.15		j,	3.61		7.41	10.92						
PROBLEM 11. Example 3.	N.	ř	17.21	10.41		.93			2.54					
PR(Cor. S. Cor. E.	1	63	1	1	1	1	-	cs	10	W			
	Cor. S.	1	-	0	-	1	1	1	1	1-	,10 Error W			
	W.	6.47	17.22	M			L		29.17	31,05 52.76 52.86 52.76	,10			
	ъi			2.88	3.60 15.59	21.48	12.81			52.76				
	trá	9.14			3.60		7.40	10.91		31,05				
	N.		17.22	10.80 10.41		.94			-2.55	31.12 31.05	70'			
	Dist.	11.20	24.36	10.80	16.00	21,50	14.80	10.91	29.28	138,85 31.12 31.05	Error N			
	Bearing.	S. 354 W.	N. 45 W.	N. 15½ E.	S. 77 E.	N. 874 E.	S. 60 E.	South.	N. 85 W.		4			
	Sta.	-	63	69	4	10	9	-	œ					

8. Areas. 158.9274 1698.1372 606.9366 1127.9624 170 2)3050.7960 152,5,398 152,5,398 2,21592	6.3680
231.2300 231.2300 30.1801 541.6571	
Mult. 30.98 E. 66.23 E. 67.89 E. 24.34 E. 17.45 E. 4.33 E.	
E.D.D. W. D. D. 20.98	
W. W	
8.80 8.80 13.07 13.07 5.09	
। । । । । । । । । । । । । । । । । । ।	
EXAMPLE 4. EXAMPLE 4. 25.51 25.61 25.62 25.66 16.06 6.97 Area 1	
8.79 8.79 13.05 5.08 5.08	
8.553 8.93 1.1 Error N.	
N. 22.53 25.53 9.51 16.07 6.96 57.98 57.88	
22.75 22.75 28.75 14.50 11.75 11.75 14.88 172.43	
Bearing. N. 19° E. S. 77 E. S. 52 W. S. 154 E. West. N. 36 W. N. 62 W.	
0 0 1 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0	

42										S	U	R V	E	Y :	ΙN	G.						Сна	p. I	II.
	S. Areas.		46.1175	86.4006	145.3364	67.7810	75.3312	26.5472						173.5503	209.5310	141.0713	122.2452		1093.9117 201.1123	2)892.7994	44,6.3997	2.55988	40	22.39520
	N. Areas.								31.0248	5.0730	.0920	86.9316	21.3785					56.6124	201.1123			. •	-	
	Mult.		10.75 W.	14.82 W.	19.72 W.	21.05 W.	16.52 W.	10.88 W.	5.58 W.	1.14 W.	9.20 E.	15.72 E.	18.59 E.	25.41 E.	25.90 E.	25.79 E.	22.68 E.	11.46 E.						
	W. D. D.	11.46	10.75	4.07	4.90	1.33										.11	3.11	11.22				•		
	E. D. D.						4.53	5.64	5.30	4.44	10.34	6.52	2.87	6.82	.49						352 P.			
	W.	6.69	4.06	.01	4.89							10.			3.45		6.45	477			Area, 44 A. 2 R. 22,3952 P.			i
	떠					3.56	.97	4.67	83		6.53		2.88	3.94		3.34					A. 2 H			
PLE 5.	zá	3.55							5.56	4.45				6.83	8.09	5.47	539				44.			
Example	ż		4.29	5.83	7.37	3.22	4.56	2.44			0.	5.53	1.15					4.94			Are			
	Cor. W.	-	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1						
	Cor. N.	1	1	1	1	0	0	1	1	-	-	1	0		-	1	-	1		털				
	×.	99.9	4.05		4.88										3.44		6.44	4.76	30.25	15 Error E.				
	ij					3.57	.97	4.68	26.		6.54		2.88	3.95		335			30.4030.25 30.25	1				
	αά	3.56							5.57	4.46				6.84	8.10	5.48	5.40		39.41 39.27	14				
	z		4.28		1	·	·	2.43				5.52	1.15					4.83	39.27	Error S.				
	Dist.	7.57	5.89	5.82	88.88 888	4.81	4.66	5.27	5.60	5.87	6.54	5.52	3.10	7.90	880	6.42	8.40	6.85		Ħ				
	Bearing.	S. 62° W.	N. 434 W.	North.	N. 334 W.	N. 48 E.	N. 12 E.	N. 624 E.	S. 64 E.	S. 404 E.	East.	North.	N. 684 E.	S. 30 E.	8. 23 W.	S. 314 E.	S. 50 W.	N. 44 W.						
	Sta.	-	જ	က	4	ည	9	7	œ	6	9	=	12	13	14	12	18	17		•	·			

	S. Areas.		981.1570	199.7348	451.4895	1457.6704	706.2000		3796.2517 153.5336	2)3642.7181	182,1.35905	4	0.54362	21.7448
	N. Areas.							153,5336		CS.	-			
	Mult.		33.35 E.	17.77 E.	34.65 W.	67.36 W.	51.36 W.	26.29 W.						
	E. D. D. W. D. D.			15.58	52.42	32.71								
	E.D.D.	26.29	33.35			1	16.00	25.07						
EXAMPLE 6.	W.			(25.71)	26.71	00.9			58.42					
Ex	ei Ei	23.22	10.13				22.00	3.07	58.42					
	ni.	1.92	29.45	(11.24)				5.84	48.42 58.42 58.42					
	N.				13.03	21.64	13.75		48.42					
	Dist.	23.30	31.12		29.72	22.46	25.94	6.60						
	Bearing.	S. 854 E.	S. 19 E.		N. 64 W.	N. 15½ W.	N. 58 E.	S. 273 E.						
	Sta.	-	63	အ	4	0	9	1						
As d Is to So i	de	par	ture							Ar. 	Co.	1.	9492 4101 0000	0
То				ng (66°	23'	-				-	10.	3593	3
nd, As Is to	o se	can		aring		6° 2	3′			Ar.	Co.	10.	.0000 .3972 .0507	7

4	1		10	1.00	S	UR			V G.	100	1.00		Снар.	-
	S. Areas.		273.3080	130.2082		114.2196	959,0386	188.9588		32.8559 1665.7332 32.8559	2)1632,8773	81,6.43865	2.57546	23,0184
	N. Areas.				6.0864				26.7695	32.8559	CS		P.	
	Mult.		17.20 W.	13.06 W.	.64 E.	20.36 E.	45.11 E.	35.72 E.	14.47 E.				Area 81 A. 2 R. 23.0184 P.	
	E.D. D. W. D. D.	14.47	17.20					9.39	21.25				31 A. 2	
	E.D. D.			4.14	13.70	19.72	24.75		V				Area 8	
у.	W.	9.05	8.18					15.80	5.45					
(. 4.)	, PA			12.32	1.38	18.34	6.41							
2, fig	πî	5.06			-	5.61	21.26	5.29						
Example 7. (Pl. 2, fig. 4.)	N.		15.89	9.97	9.51				1.85					
PLE 7	Cor.						-							
Ехам	Cor.						1							
	W.	9.05	8.18			Ŋ,		15.80	5,45	38.45				
•	ĸ			12.32	(1.38)	(5.61) (18.34)	6.40			38.44				
	vá	5.06				(5.61)	21.27	5.29		37.23				
	N.	Ü	15.89	9.97	(9.51)				1.85	37.22				
	Dist.	10.34	17.88	15.85	19.61	19.18	22.21	16.66	5.76					
	Bearing.	S. 603 W.	N. 274 W.	N. 51 E.	N. (84) E.	S. (73°) E.	S. 163 E.	S. 713 W.	N. 714 W.					
	Sta.	-	C.S	00	4	10	9	-	00					

ı

Day 117	
PROB. 11.] CONTENT OF LAND.	45
As diff. lat. DF 3.91 Ar. Co. 9.40782 Is to depart. 19.73 1.29513	
Is to depart. 19.73 1.29513 So is radius 0.00000	
To tang. bearing N. 78° 47′ E 10.70295	
-	
As radius Ar. Co. 0.00000	
Is to secant bearing 78° 47′ 10.71104	
So is diff. latitude 3.91 0.59218	;
To distance DF 20.10 1.30322	
FE 19.18	
ED 9.61 Ar. Co. 9.01728	
DF 20.10 " " 8.69680	
2)48.89	
	
Half sum 24.445 1.38819	
Diff. 5.265 0.72140	
2)19.82367	
Cos. ½ FDE 35° 17′ 9.91183	
FDE 70° 34′	
Bearing DF N. 78 47 E.	
Bearing DE N. 8° 13' E.	
As FE 19.18 8.71715	
Is to DE 9.61 0.98272	
So is sin. FDE 70° 34′ 9.97453	
To sin. DFE 28° 12' 9.67440	
Bearing FD S. 78 47 W.	
106 59	
180	
Bearing EF S. 73 1 E.	
Bearing EF S. 73 1 E.	
A A	

46						s	UR	VЕ	YII	۱G.					Сна	p. III.
		•		E	XAMI	PLE	8. (1	Fig.	81,	Sur	veyi	ng.)				
S. Areas.		26.9068	654.7476	170.6013	81.9728		1636.2584	1870.0887		1347.7698	168.6706	5956.9160 1061.2956	2)4895.6204	244 (7.8102) 4	3.12408	4.96820
N. Areas.						973.0128			88.2828			1061.2956	,ęs, ,		<u>9</u>	·
Mult.		15.06 W.	29.64 W.	14.47 W.	22.52 E.	53.58 E.	78.97 E.	87.51 E.	64.44 E.	47.34 E.	22.61 E.				Area 244 A. 3 R. 4.9632 P.	
W. D. D.	22.61	15.06	14.58						23.07	17.10	24.73				244 A.	
E. D. D. W. D. D.				15.17	36.99	31.06	25.39	8.54							Area	
W.		15.06						8.09	14.98	2.12	(22.61)	62.86				
pot [*]			84.	14.69	22.30	8.76	16.63					62.86				
ಹ					3.64		20.72	21.37		28.47	(7.46)	81.66				
ž	(26.47)	1.78	22.09	11.79		18.16			1.37			81.66				
Diet.		15.16	22.10	18.83	22.60	20.17	26.57	22.86	15.04	28.55						
Changed Bearing.	North.	N. 83½ W.	N. 14 E.	N. 514 E.	S. 80\$ E.	N. 253 E.	S. 381 E.	S. 204 W.	N. 843 W.	8. 44 W.	8. 714 W.					
Bearing.	N. 514 W.	8. 454 W.	N. 50 W.	North.	N. 48 E.	N. 254 W.	East.	S. 304 E.	S. 44 W.	8. 47 E.	S. 204 W.					
Sta.	AB	BC	9	DE	适	Ę	НЭ	Ħ	K	K	7					

...

PROB. 1	1.7 C (NTENT	OFI	AND.	Section 1	47
A Is	as radius s to cosec. chan to is departure ?	22.61 -	ng LA		- 10.0 - 1.3	0000 2241 5430 7671
I	As radius s to cotang. bea So is departure	 ring -	 	- Ar.	- 9.5	0000 1819 5430
7	o diff. latitude	7.46			- 0.8	7249 ====
	Ехам	To find to	•	• -)	
Sta.	Bearing.	Dist.	N.	8.	E.	w.
EA	S. 52 W.	10.70		6.59		8.43
AB	S. 7½ W.	13.92		13.80		1.82
BC	S. 33‡ E.	9.00		7.53	4.93	
				27.92		10.25 4.93 5.32
I	As diff. lat. EC s to depart. 5.35 So is radius			- Ar.		5408 /2591 0000
7	To tang. bearing	S. 10° 47	" W.	· • • ·	- 9.2	7999
I S	As radius s to secant bear So is diff. lat		7' -	- Ar.	- 1.4	0774 4592
] 7	lo distance 28.4	2			1.4	5366

				S	UR	VE	YIN	3.			[Снар. П
S. Areas		76.5165	834.6248	6.7551	685.5948		1603.4912	2)1602.9950	80,1.4975	.59900	23.96000
N. Area.						.4962		' ଜ			
Mak		17.59 E.	29.84 E.	2.53 W.	31.32 W.	16.54 W.				Area, 80 A. 0 R. 23.96 P.	
E.D. D. W. D. D.				32.37	28.79					0 A. 0 R	
E.D.D.	16.54	17.59	12.25			14.78				rea, 8	
W.	1 -		5.35	27.02	1.77					4	
H		17.60				16.55	Ì				
80		4.35	27.97			.03					
×	7.79			2.67	21.89						
Cor.W.	-	8	20	4	4	8					
Cor. S.	65	80	10	0	4	8					
W.	1		5.30	56.98	1.73		34.01				
E.		17.63				16.58	34.21 34.01				
80	1	4.32	27.92				32.24				
N.	7.81		1	2.72	21.93		32.46				
Dist.	7.81	18.15	28.42	27.12	22.00	16.58	120.08				
Bearing.	North.	S. 764 E.	S. 104 W.	N. 844 W.	N. 44 W.	East,					
Sta.	-	ca	80	4	10	9					

Раов. 12.]	-		-	_		NTE		77			14.1		_	_	_	-	4
									M	12.							
		_				1-400		MPL	Е 3.	-	10						
	S. Areas.	Į.	210.9150	153.8880	32.2704	397.0734 61.3408	2)458.4142	22,9.2071	4	3.65254	27.31360						
	N. Areas.		7.8			Off-sets	· es	•									
	Mult.		19.35 E.	16.03 E.	3.32 W.	Double Area of Off-sets											
	W. D. D.			3.35	19.35	Double				4							
	E. D. D.	3.32	19.35							3 K. 27.3136 F.							
	W.	2	6	13.21	6.14												
	Ħ	9.46	9.89						1	22 A.							
	υά	I	10.90	9.60						Area,							
	N.	10.78			9.72												
	Cor. W.			1													
	Cor. S.	1	1	1			-	1	lie.	Lic	10	16	16	100	Lev	In	
	W.			13.20	6.14	19.34		Areas.	7.2345	4.6575	9.7900	6.2250	9.6600	16.4576	7.3162	61.3408	
	Ħ	9.46	9.89			19.35	- 1-	Sums	2.73	4.05	4.45	4.15	4.60	5.92	3.14	10	
	trá		10.89	9.59		20.48 19.35 19.34	1	Dist.	183	15 4	20 4	50	10	28	88		
	N.	.35 10.79		ĺ	9.72	20.51		in in	3,	-	2	7	6,	25	25	1	
	Dist.	14.35	14.71	16.32	11.50		1	See See	2.35	1.70	2.75	1.40	3.20	2.72	0.42		
	Bearing.	N. 414° E. 14.35	S. 424 E.	S. 54 W. 16.32	N. 324 W. 11.50		1	0.00	2.65 2.35 2.65 2	3.80	6.00	7.50	9.60	12.38	14.71		
	Sta.		03	က	4	1											

50					S	UR	VEYIN	G.					[Сн.	AP.
	S. Areas.		162,5436	224.1617	233.5320	401.1732	1021.4105 72.9743 37.8761	2)1132,2609	56,6.13045	2,45218	40	18.08720		
	N. Areas.							Q						
	Mult.		19.56 E.	12.53 E.	15.60 W.	23.71 W.						56 A. 2 R. 18.08720 P.		
	w.n.p.			7.03	28.13	8.11					3	2 R. 18.		
	E.D.D.	23.71	19.56				Ì					56 A.		
	W.	11		11.45	16.68							Area,		
	pi	15.14	4.45			8.57	İ					4		
4	zá	5.69	8.31	17.89										
Example 4.	N.				14.97	16.92		_						
ଘ	Cor. E.	cs	-	cs	63	cs			8.6775	19.6268	9.5718	37.8761		
	Cor. S.	4	cs	9	9	20			3.25	5.56	3.01	T		
	W.			11.47	16.70		28.17	_	1 2.67	3.53	3 3.18			
	n i	15.12	441			8.55	80.08	0 .31	7 2.94	0 2.62	8 0.39			
	mi	5.65 15.12	8.29	17.83			31.77	00	2.67	6.20	9.38	1		
	N.				15.03	16.97	32,00 31.77 28.08 28.17		100	96	120	188	18	18
	75	417	9.38	21.20	22.47	8	62		9.2720	18.7596	17.3479	17.9958	9.5990	70 07/19
	Dis	16.1	6	-	-	19.	88		2.44	5.79	6.13	5.34	3.31	
	Bearing.	S. 691º E.	S. 28 E.	S. 323 W.	N. 48 W.	N. 264 E.		_	3.80	3.24	2.83	3.37	2.90	
	Bean	S. 69	20.	8. 35	N. 4	N. 2		.44	2.00	3.79	2.34	3.00	0.31	
	Sta.	-	25	60	4	20		000	3.80	7.04	9.87	13.24	16.14	

PROBLEM 13.

TRODIMM 10.								
Example 2. (Pl. 2, fig. 5.)								
Here the various angles will be found to be as in the following proportions. Then,								
To find log. of GA:								
As sin. FAG 88° 30' Ar. Co. 0.00015								
Is to sin. GFA 68° 30′ 9.96868								
So is FG 20 ch 1.30103								
To GA 1.26986								
To find log. GB:								
As sin. FBG 42° Ar. Co. 0.17449								
Is to sin. GFB 24° 9.60931								
So is FG 1.30103								
To GB 1.08483								
To find log. GC:								
As sin. GCF 43° 15′ Ar. Co. 0.16419								
Is to sin. GFC 38° 9.78934								
So is FG 1.30103								
To GC 1.25456								
To find log. GD:								
As sin. GDF 44° 30′ Ar. Co. 0.15434								
Is to sin. GFD 59° 9,93307								
So is GF 1,30103								
To GD 1.38844								
To find log. GE:								
As sin. GEF 35° 30′ Ar. Co. 0.23605								
Is to sin. GFE 103° 30' 9.98783								
So is GF 1.30103								
To GE 1.52491								
· •								

To find 2 ABG: As radius	52 SURVEYING. [CHAP. I	II.
As radius	To find 2 ABG:	
So is BG, AG	-	
To 2 ABG 226.268	Is to sin. AGB 91° 9.99993	- 1
To 2 ABG 226.268	So is BC AC (BG 1.08483	
To find 2 BGC: As radius		ļ
As radius	To 2 ABG 226.268 2.35462	
Is to sin. BGC 15° 15' 9.42001 So is GB, GC	To find 2 BGC:	
So is GB, GC		
To 2 BGC 57.464		
To 2 BGC 57.464	So is GB, GC (GB 1.08483	
To find 2 CGD: As radius	(GC 1.25456	
As radius	To 2 BGC 57.464 1.75940	
Is to sin. CGD 22° 15′	To find 2 CGD:	
Is to sin. CGD 22° 15′	As radius ' Ar. Co. 0.00000	
To 2 CGD 166.435		
To 2 CGD 166.435	So in CC CD (GC 1.25456	
To find 2 DGE: As radius	1 130) 18 (70/2 (70) (
As radius	To 2 CGD 166.435 2.22124	
As radius	To find 2 DGE:	
So is GD, GE { GD	As radius Ar. Co. 0.00000	
GE 1.52491 To 2 DGE 475.667 2.67730 To find 2 EGA: As radius Ar. Co. 0.00000 Is to sin. EGA 18° 9.48998 So is EG, GA	Is to sin. DGE 35° 30′ 9.76395	
To 2 DGE 475.667 2.67730 To find 2 EGA: As radius	So :- CD CE (GD 1.38844	
To find 2 EGA: As radius	GE 1.52491	
As radius	To 2 DGE 475.667 2.67730	
Is to sin. EGA 18° 9.48998 So is EG, GA	To find 2 EGA:	
So is EG, GA { GE 1.52491 } GA 1.26986 To 2 EGA 192.641 2.28475 2 DGE 475.667 2 CGD 166.435 2 BGC 57.464 892.207 2 AGB 226.268 2)665.939	As radius Ar. Co. 0.00000	
To 2 EGA 192.641 2.28475 2 DGE 475.667 2 CGD 166.435 2 BGC 57.464 892.207 2 AGB 226.268 2)665.939	Is to sin. EGA 18° 9.48998	
To 2 EGA 192.641 2.28475 2 DGE 475.667 2 CGD 166.435 2 BGC 57.464 892.207 2 AGB 226.268 2)665.939		
2 DGE 475.667 2 CGD 166.435 2 BGC 57.464 892.207 2 AGB 226.268 2)665.939	(GA 1.26986	
2 CGD 166.435 2 BGC 57.464 892.207 2 AGB 226.268 2)665.939		l
2 BGC 57.464 892.207 2 AGB 226.268 2)665.939		}
892.207 2 AGB 226.268 2)665.939		
2 AGB <u>226.268</u> 2)665.939	2 BGC 57.464	
2)665.939	892.207	[
	2 AGB 226.268	
ABCDE $\overline{332.9695}$ Ch. = 33 A. 1 R. 7.512 P.	2)665.939	l
	ABCDE 332.9695 Ch. = 33 A. 1 R. 7.512 P.	

CHAPTER IV.

LAYING OUT AND DIVIDING LAND.

PROBLEM 1.

Example 2.

Here, 325 Acres = 3250 chains.And side = $\sqrt{3250} = 57 \text{ chains.}$

PROBLEM 2.

EXAMPLE 2.

Here breadth $=\frac{5 \text{ Acres}}{8 \text{ chains}} = \frac{50}{8} = 6.25 \text{ chains.}$

PROBLEM 3.

EXAMPLE 2.

Here, 27 A. 3 R. 20 P. = 4460 P. And, As 7:9::4460:5734.2857. $\sqrt{5734.2857} = 75.725 = \text{length}$. Also, As 9:7::75.725:58.897 = breadth.

PROBLEM 4.

Example 2. (Pl. 2, fig. 6.)

Here, 114 A. 2 R. 33.4 P. = 1147.0875 chains. Also, $\sqrt{1147.0875 + 7.55^2} = \sqrt{1204.09} = 34.7$. And, 34.7+7.55 = 42.25 length. 34.7-7.55 = 27.15 breadth.

PROBLEM 5.

Example 3. (Pl. 2, fig. 7.)

Here, 2 Acres = 320 Perches.

54	SURVEYING. [CHAP. 1V.						
And,							
And,	As AB, sin. A { AB 30 P Ar. Co. 8.52288 sin. A 71° 15′ Ar. Co. 0.02368						
	Is to 2 ABC 640 2.80618 So is radius 10.00000						
	To AC 22.53 1.35274						
	Example 4. (Pl. 2, fig. 8.)						
·	As AB, sin. A { AB 32.26 - Ar. Co. 8.49134 { sin. A 83° 30′ Ar. Co. 0.00280 } Is to ABCD 740 2.86923 So is radius 10.00000 To AD 23.09 1.36337						
	PROBLEM 6.						
	Example 2. (Pl. 2, fig. 9.)						
	Here, 27 A. 1R. 16 P. = 273.5 Ch.						
And	· · · · · · · · · · · · · · · · · · ·						
A Is	s ABC 273.5 Ar. Co. 7.56304 s to BDC 100 2.00000 o is AB 35.20 1.54654						
	o BD 12.87 1.10958						
	PROBLEM 7.						
	Example 2. (Pl. 2, fig. 10.)						
	Construction.						
Make AB, equal to the greater of the given sides (20). Draw BD perpendicular to AB, equal to twice the given area, divided by AB (12.39). Through D draw DC parallel to AB. Then if AC be made equal to the other given side (16.25), and BC be joined; ABC will be the triangle. For the Division Line. Make AP = 8.50 the given distance.							

For the Division Line. Make AP = 8.50 the given distance. Take AF to AC in the ratio of the part to be cut off to the whole area. Join PF, draw BG parallel to it; then PG will be the division line.

ŗ

PROB. 9.	1 L	AYING	OUT	AND	DIVIDING	LAND.
----------	-----	-------	-----	-----	----------	-------

Demon	stration.

AB: AP:: AG: AF, Therefore, AB. AC: AP. AG:: AC. AG:
AG. AF:: AC: AF, or AB. AC. sin. A: AP. AG. sin. A:: AC:
AF::m:n (m being the whole area, and n the part to be cut off.)
Hence, since AC. AB sin. $A = m$, AP. AG sin. $A = n$, and PG is
the division line.

Calculation.

As ABC 123.9375											
Is to APG 30 -											
So is AB.AC	(A)	В	20	-	-	-	-	-	-	1.30103
bo is Ab. Ac	Ì	A(C	16	.25	-	-	-	•	-	1.21085
To AP.AG			-	-	-	-	-	-	· -	-	1.89580
AP = 8.50 -	-	,	-	-	-	-	-	-		-	0.92942
$\mathbf{AG} = 9.255$	-	,	-	•	-	-	-	-	-	-	0.96638

PROBLEM 8.

Example 2. (Pl. 2, fig. 11.)

Here,	As BAC 100 ch.		-	-	-	-	-	-	Ar.	Co.		8.00000
	Is to BDG 45											
	So is BA ²		S B	A	25	-	-	-	-	-	-	1.39794
	DO 13 1311		(B	A	-	-	-	-	-	-	-	1.39794
	To BD ²	-	-	-	-	-	-	•	-	-	2)	2.44909
	BD = 16.77		-	-	-	•	•	-			_	1.22454

PROBLEM 9.

Example 2. (Pl. 2, fig. 12.)

Here the angles are, $A = 71$	l° 45′	, B	= 4	9° 1	15',	an.	d C	! ==	59°.	Hen	ce,
As sin. A. sin. B	sin.	A B	71° 49°	45' 15'		Ar.	. Cc).	0.029 0.120	241 058	
Is to rad. sin. C	radi sin.	us C	- 59°		-	- -		- 1 -	0.000 9.98	000 907	
So is 2 ABC 80 ch		-	-	- •	-	-	-	-	1.90	309	
To AB*		-	-			-	-	2)	1.979	915	
AR - 0.763		_	_		_	_	_	_ '	0.20	357	

PROBLEM 10.

	Example 2. (Pl. 2, fig. 13.)	
	Here the angles $A = 99^{\circ}$ 30', $B = 122^{\circ}$, and $P = 41$	l° 3 0′.
	(sin A 99° 30' Ar. Co. 0	00800
	As sin. A. sin. B \{ \sin. B \ 122^\circ \cdot \	.00000 .82126 .6989 7
	To fourth term $39.61 1$ $AB^{2} - 36$ $CD^{3} - \sqrt{75.61} = 8.695.$.59781
Also,	As sin. P 41° 30′ Ar. Co. 0. Is to sin. B 122° 9.	.17874 .92842 .43056
	To AD 3.449 0	.53772
	Example 3. (Pl. 3, fig. 1.)	
Н	Here the angles are, $A = 90^{\circ}$, $B = 73^{\circ}$ 30', and $P =$	16° 30′.
	As sin. A. sin. B $\begin{cases} \sin. A 90^{\circ} - Ar. \text{ Co. } 0 \\ \sin. B 73^{\circ} 30' - " " 0 \end{cases}$.00000 .01826
	Is to radsin. P { radius 10 sin. P 16° 30′ 9	
\$	~ 1 0 1 DOD 1	. 20412
	To fourth term 47.39 1 AB* - 182.25	.67572
	$CD = \sqrt{134.86} = 11.61.$	
And,	O	.54666 .98174 .27646
	To AD 6.38 0	.80486
1		

PROBLEM 11.

Example 2. (Pl. 3, fig. 2.)

Here the angles are, $A=90^\circ$, $B=73^\circ$ 30', $C=72^\circ$ 45', $D=123^\circ$ 45', and $P=16^\circ$ 30'.

	An ain C ain D	(sin.	C'	72°	45 ′	Aı	r. Co.	0.01999
	As sin. C. sin. D	sin.	D	123°	45'	66	66	0.08015
	rad., sin. P	(rad.		-		-		10.00000
•	raus, siii. I	sin.	P	16°	30'	•		9.45334
•	So is 2 ABCD 16	0 ch.	-	- .		-		2.20412
	To fourth term 57	7.23 -	-	-	- •	•		1.75760
And,	As sin. C. sin. D	{ sin. { sin.					r. Co.	0.01999
	T	(sin.	A	909	-	-		10.00000
	Is to sin. A. sin. B	sin.				-		9.98174
	Ca. ta ADS	(AB	13	3.50	-	-		1.13033
	So is AB ²	(AB	-	-	• -	-		1.13033
	To fourth term 22	20.06 57.23	•	•		-		2.34254
	$CD = \sqrt{16}$	32.83 =	= 1	2.76	3			•
	As sin. C 72° 45'			-		Aı	r. Co.	0.01999
	Is to sin. B 73° 3	0' -	-	-		-		9.98174
	So is AB 13.50		-	-		-		1.13033
	To CS 13.554 -		_					1.13206
	CD 12.76							
	SD = .794							
	As sin. P 16° 30'		. -	-		A	r. Co.	0.54666
	Is to sin. C 72° 4	5' -	-	-				9.98001
	So is SD .794 -		-	-		-		1.89982
l	— 4 — 0 000							

To AD 2.67 -

58	SURVEYING.	[Chap. IV.

Example 3. (Pl. 3, fig. 3.)

Here the angles are,	$B = 133^{\circ}, A = 68^{\circ}$	15', C = 64°, D =	= 94° 45′,
and $P = 21^{\circ} 15'$.			

As sin. C. sin. D	sin. C	64° - 94° 45′	Ar. Co.	0.04634 0.00149
Is to rad. sin. P	§ radius			10.00000
15 60 1000 1011 1	isin. P	21° 15′		9.55923
So is 2 ABCD 400	ch			2.60206

To fourth term 161.85 - - - - - 2.20912

As sin. C, sin. D	$\begin{cases} \sin C \\ \sin D \end{cases}$	Ar. Co.	0.04634 0.00149
Is to sin. A, sin. B			
	(AB 17.24 -		

To fourth term 225.41 - - - - - 2.35297

 $CD = \sqrt{387.26} = 19.68.$

As sin. C 64°	-	-	-	-	-	A	r. (o.	0.04634
Is to sin. B 183° -	-	-	-	-	-	-	-	-	9.86413
So is AB 17.24	-	-	-	-	-	-	-	-	1.23654

To CS 14.03 - - - - - - 1.14701 CD 19.68

SD = 5.65

As sin. P 21° 15'	-	-	-	-	-	-	A	r. (Co.	0.44077
Is to sin. C 64°-	-	-	-	-	-	-	-	-	-	9.95366
So is SD 5.65 -	-	-	-	•	-	-	-	-	-	0.75205

To AD 14.01 - - - - - - - 1.14648

PROBLEM 12.

Example 2. (Pl. 3, fig. 4.)

To find bearing and distance of AB and area of AKB.

	426.9830	2 ABCD = 426.9630	,								
	273.0170 700.0000	Twice the given area = $700,0000$	e the gi	Twic							
	201.9474	5.86 14.86 E. 201.9474	5.86		20.72		13.59				ΑВ
	71.0696	20.72 E. 71.0696		20.72		3.43 14.86	8.43		15.25	S. 77 E. 15.25	KB
			14.86			5.86		17.02	18.00	AK N. 19 E. 18.00 17.02	ΑK
N. Areas.	S. Areas. N. Areas.	Mult.	E.D.D. W.D.D.	E. D. D.	W.	踔	5 2	N.	Dist.	Bearing.	Sta.

As diff. lat. AB 13.59 - - - - Ar. Co. 8.86678 Is to departure 20.72 - - - - - 1.31639 So is radius - - - - - - - - - 10.00000

To tang. bearing N. 56° 44' E. - - - - 10.18317

60 SURVEYING.	[CHAP. IV.
As radius Ar. Co. Is to secant of bearing 56° 44′ So is diff. lat. 13.59	0.00000 10.26079 1.13322
To distance AB 24.78	1.39401
The angles will now be found to be as follow, viz.: DAB = 61° 1', ABC = 83° 44', BCD = 70° 30', CDA = 144° 45', and P = 35° 15'.	·
As sin. C sin. D \ \begin{cases} \sin. C & 70\circ 30' & Ar. Co. \\ \sin. D & 144\circ 45' & Ar. Co. \end{cases}	
· · · · · · · · · · · · · · · · · · ·	10.00000
So is 2 ABCD 426.983	2.63041
To Fourth term 452.96	2.65606
And,	
As sin. C. sin. D $\begin{cases} \sin C Ar. Co. \end{cases}$	
(sin. D Ar. Co.	
In to ain A ain H	9.94189
(sin. 15 83° 44°	9.99740 1.39401
So is AB^2 $ \begin{cases} AB & 24.78 & \\ AB & \end{cases} $	1.39401
•	
, To Fourth term 981	2.99167
$CD = \sqrt{\frac{452.96}{528.04}} = 22.98$	
As sin. C 70° 30′ Ar. Co.	0.02565
Is to sin. B 83° 44′	9.99740
So is AB 24.78	1.39401
To CS 26.13	1.41706
CD 22.98	
SD 3.15	
As sin. P 35° 15′	0.23871
Is to sin. C 70° 30'	9.97435
So is SD 3.15	0.49831
To AD 5.145	0.71137

Рков. 13.]	LAY		OUT Exam	ROBI	LEN	I 1:	3.	N G		ANI	
	1				IA	E	DE	CD	ВС	AB	Sta.
	To tang.	Is to departs So is radius	As diff. le			S. 23} E.	S. 64 E.	N. 384 E.	N. 261 W.	s. 78 w.	Bearings.
11 4-11	aring	Is to departure 9.91 So is radius	As diff. latitude IA 3.95			South.	S. 403 E.	N. 61 E.	N. 84 W.	N. 78‡ W.	Changed Bearings.
45° 1'	68° 16′ 23 15		3.95	d			10.86	12.82	11.08	8.00	Dist.
				18.69				6.07	11.06	1.56	Z
				18.69	(3.95)	(6.51)	8.23				îu
		• •	Ar.	18.69 18.88 18.88			7.09	11.29			ļa
	10	- 10	Ar. Co. 9.40340	18.38	(9.91)				.62	7.85	w.
	10.39947	0.99607	.40340			7.09	18.38	10.67			E. D. D.
					9.91				8.47	17.76	W. D. D
	÷			Twice given Area,	0.00	9.91 E.	2.82 E.	15.56 W.	26.23 W.	17.76 W.	Mult.
		:	9.6								N. Areas.
187	1178 991	5072 4955	1)64.5328 59 46	435,4672 500.			23.2086	94.4492	290.1038	27.7056	S. Areas.

As radius - - Ar. Co. 0.00000 Is to secant bearing 68° 16' - - -- 10.43146 So is diff. lat. 3.95 0.59660 To distance AI 10.67 1.02806

PROBLEM 14.

Example 2. (Pl. 3, fig. 6.)

Here, As $2:1::BC^{2}(100):EF^{2}=50$,

 $EF = \sqrt{50} = 7.07.$

And, As BC (10): EF (7.07):: AB (15): AF = 10.605.

PROBLEM 15.

Example 2. (Pl. 3, fig. 7.)

Here the angles are, $A = 36^{\circ} 30'$, $B = 100^{\circ} 30'$, $C = 43^{\circ}$, $E = 74^{\circ} 30'$, and $F = 69^{\circ}$.

As aim To aim TO	\ sin. E 74° 80	Ar. Co.	0.01608
As sin. E.sin. F	(pitte T. On		
Is to sin. C. sin. B	(sin. C 43°		9.83378
is to sur C.sur D	(sin. B 100° 30′		9.99267
	BC 18.66 BC		1.27091
So is BC ²	(BC		1.27091
To fourth term 259.		2.41421	
	4		

9)1038.16

 $EF = \sqrt{115.35} = 10.74.$

As sin. A 36° 30′ -	-	-	-	-	-	Ar. Co.	0.22561
Is to sin. E 74° 30'	-	-	-	-	-		9.98391
So is EF 10.74	•	•	•	-	-		1.03100
To AF 17.40	-	-	•	-	-		1.24052

PROBLEM 16.

Example 2. (Pl. 3, fig. 8.)

Here, EF = $\sqrt{\left(\frac{AB^2 + CD^2}{2}\right)}$ = $\sqrt{5796.18}$ = 76.13. And, DC—AB (29.4): FE—AB (16.13) :: AD (30) : AF = 16.46.

PROBLEM 17.

EXAMPLE 2. (Pl. 3, fig. 9.)

Here, the angles are $A=80^\circ$ 30', $B=123^\circ$ 30', $C=90^\circ$, $D=66^\circ$, and $P=24^\circ$.

(sin. A 80° 30' Ar. Co. 0.00600 As sin. A. sin. B sin. B 123° 30' 0.07889 (sin. C 90° 10.00000 Is to sin. C. sin. D sin. D 66° 9.96073 CD 13.33 1.12483 So is CD² CD 1.12483 To Fourth term 197.37 2.29528

 $\begin{array}{c}
\bullet \\
4 \text{ AB}^2 = 592.11 \\
207.86 \\
7)799.47
\end{array}$

 $EF = \sqrt{114.21} = 10.69$

As sin. P 24° - - - - - - - - - Ar. Co. 0.39069
Is to sin. E 123° 30′ - - - - - - 9.92111
So is FE—AB 3.49 - - - - - - 0.54283
To AF 7.155 - - - - - - - - 0.85463

Example 3. (Pl. 3, fig. 10.)

Here the angles are as in the last example.

(sin. C 90° Ar. Co. 0.00000 As sin. C. sin. D l sin. D 66° 0.03927 sin. A 80° 30′ 9.99400 Is to sin. A.sin. B sin. B 123° 9.92111 AB 7.20 0.85733 So is AB² AB 0.85733 To Fourth term 46.67

3 CD² 533.0667

7)719.7467

 $EF = \sqrt{102.8209} = 10.14$

64 8	URVEYING.	[CHAP. IV.					
As sin. P 24° Is to sin. E 90° - So is CD—EF 3.19	Ar. Co.	0.39069 10.00000 0.50379					
To DF 7.843		0.89448					
AD 18	•						
AF = 10.157	•						
· P	ROBLEM 18.						
EXAME	PLE 2. (Pl. 3, fig. 11.)						
Here the angles A, B, C, also $E=67^{\circ}$ and $F=89^{\circ}$.	D, and P, are as in the l	ast Problem,					
As sin. E.sin. F	(sin. E 67° - Ar. Co. (sin. F 89° - " "	0.03597 0.00007					
Is to sin. A. sin. B	(ein A 80° 20'	9.99400 9.92111					
So is AB ²	(AB 7.20	0.85733 0.85733					
To Fourth term	46.32	1.66581					
185.28							
As sin. E. sin. F	{ sin. E 67° - Ar. Co. sin. F 89° - " "	0.03597 0.00007					
Is to sin. C. sin. D	{ sin. C 90° : { sin. D 66° :	10.00000 9.96073					
So is CD ²	CD 13.33 CD	1.12 483 1.12 4 83					
Fourth term	176.37 3	2.24643					
9 % 5 :	529.11 185.28	·					
	7)714.39	,					
EF =	· 						

PROB. 19.7 LAYING OUT AND DIVIDING	Рков. 19.	9.7 LAYING	OUT ANI	DIVIDING	LAND.
------------------------------------	-----------	------------	---------	----------	-------

A:	r. C	0.	0.03597
-	-	-	9.92111

65

Is to sin. B 123° 30′ - - - - - - 9.92111 So is AB 7.20 - - - - - - - 0.85733

To ES - 6.52 - - - - - - 0.81441

EF - 10.10

As sin. E 67°

FS - 3.58

As sin. P. 24° - - - - - - - Ar. Co. 0.39069
Is to sin. E 67° - - - - - - 9.96403
So is FS 3.58 - - - - - - - 0.55388
To AF 8.102 - - - - - - 0.90860

PROBLEM 19.

Example 3. (Pl. 3, fig. 12.)

The area of this tract has been found (Ex. 3, Prob. 11, Chap. III.) to be 858.552 square chains. (The latitudes and departures used in the subsequent operations are taken from that example.)

To find area ABCDE, and the latitude and departure of EA.

l ——									
	N.	ß.	E.	w.	E. D. D.	W, D. D.	Mult.	N. Area.	S. Areas.
AB		9.15		6.46		1.29			
BC	17.21			17.20		23.66	23.66 W.		407.1886
CD	10.41		2.89			14.31	37.97 W.		395.2677
DE		3.61	15.60		18.49		19.48 W.	70.3228	
EA		(14.86)	(5.17)		20.77		1.29 E.		19.1694
	27.62	27.62	23.66	23.66					821.6257 70.3228

751.3029

2 ABCDEI 858.552

2)107.2491

AEI 53.6245

66				SUI	RVEY	ING.		٠ [CHAP. IV.
	N.	8.	E.	w.	E. D. D.	W. D. D.	Mult.	N. Area.	S. Area.
AE	14.86			5.17		21.49			
EF	.93		21.49		16.32		16.32 F	L 15.1776	
FA		(15.79)		(16.32)	5.17		21.49 E		339.3271
									15.1776
								2)324.1495
								AEF	162.07475
		A 77173	100.0				A	O- 80	2000
		AEF to AE					- Ar.	Co. 7.79	9028 2937
		is lat.	_						3848
	То	lat. E	I .31					1.48	8813
					•			_	
		AEF					- Ar		9028
									വഹരം
		to AE	,	 F 91 ∕					2937 2994
	So	is dep	art. E		19 -			1.3	3224
	So		art. E		19 -			1.3	
	So	is dep	art. E	7.11		· · ·	F.	1.33	3224
	So	is dep	art. E.	7.11 N.	19 - 	: : 	E.	1.33 0.84 - w.	3224
	So	is dep	art. E.	7.11			E.	1.33	3224
	So	is dep	art. E.	7.11 N.			E.	1.33 0.84 - w.	3224
	So	depar	art. E.	7.11 N.				1.33 0.84 - w.	3224
	So To	depar AE EI IA	art. E.	7.11 N. 14.86	s.	7)	7.11	w. 5.17	3224 5189
	So To	depar	art. E.	7.11 N. 14.86 .31	s.		7.11	w. 5.17 (1.94)	3224
•	So To As Is	depar AE IA diff. ls	art. E.	7.11 N. 14.86 .31	s.	7)	7.11	w. 5.17 (1.94)	3224 5189 ————————————————————————————————————
	So To As Is So	AE IA diff. leto dep	at. 15. art. 1. lius -	7.11 N. 14.86 .31 1794 -	(15.1	7)	7.11	w. 5.17 (1.94) Co. 8.8 - 0.2 - 10.0	3224 5189 ————————————————————————————————————
	So To As Is So To	AE IA diff. latto dep	at. 15. at. 15. art. 1. lius -	7.11 N. 14.86 .31 1794 -	(15.1	7)	7.11 - Ar.	w. 5.17 (1.94) Co. 8.8 - 0.2 - 10.0	1901 8780 0000 0681
	As Is So To As Is	AE IA diff. late to dep is radius to second tang.	at. 15. art. 1. lius - bearm	7.11 N. 14.86 .31 1794 aring	(15.1	7)	7.11 - Ar.	w. 5.17 (1.94) Co. 8.8 - 0.2 - 10.0 Co. 0.00 - 10.00	1901 8780 0000 0681 0000 0352
	As Is So To As Is So	AE IA diff. lato dep is radius radius	at. 15. art. 1. ius - bearm	7.11 N. 14.86 .31 1794ng AI aring 15.17	(15.1	7)	7.11 - Ar.	W. 5.17 (1.94) Co. 8.8 - 0.2 - 10.0 - 9.1 (1.94)	1901 8780 0000 0681

CHAPTER VI.

MISCELLANEOUS QUESTIONS.

QUESTION 1.

Here $\frac{1}{4}$ Acre = 2420 square yards; And radius = $\sqrt{\left(\frac{2420}{3.1416}\right)} = \sqrt{770.3081} = 27.75$.

QUESTION 2.

Construction.

Make AB (Pl. 4, fig. 1) = 40 = one of the given sides, and at A draw AL perpendicular to AB and = $\frac{320}{40}$ = 8; through L draw GH parallel to AB, and with the centre A and distance = 20 = the other given side, describe an arc, cutting GH in D and C; join AC, BC, AD, and BD: then will ABC and ABD answer the conditions of the question.

Calculation.

AE = AF = $\sqrt{AC^2 - CE^2} = \sqrt{400 - 64} = 18.3303$; and BE = AB—AE = 21.6697; therefore, BC= $\sqrt{BE^2 + EC^2} = \sqrt{533.57589809}$ = 23.099. Also, BF = AB+AF=58.3303, and BD = $\sqrt{BF^2 + FD^2}$ = $\sqrt{3466.42389809} = 58.876$.

Another Solution.

Find AE = AF as before. Then (Euclid, Book II. 13) $BC^s = AB^s + AC^s - 2 AB.AE = 2000 - 1466.424 = 533.576$, and BC = 23.099. Also (Euclid, II. 12), $BD^s = AB^s + AD^s + 2 AB.AF = 2000 + 1466.424 = 3466.424$, and BF = 58.876.

QUESTION 3.

Here it is evident the number of acres will be inversely as the number of square yards in a Perch:

Therefore, $6^2:5.5^2::110 \text{ A.}:92 \text{ A.} 1 \text{ R.} 28\frac{3}{5} \text{ P.}$ Cheshire. And $7^2:5.5^2::110 \text{ A.}:67 \text{ A.} 3 \text{ R.} 25\frac{15}{5} \text{ P.}$ Irish.

QUESTION 4.

Here $\frac{28}{12} = \frac{7}{3} =$ twice the thickness of the wall, also 840 links = 554.4 feet=the longer diameter within the walls; 612 links=403.92 feet = the shorter; $554.4 + \frac{7}{3} = \frac{1670.2}{3} =$ longer diameter outside, and $403.92 + \frac{7}{3} = \frac{1218.76}{3} =$ shorter. By Prob. 10, Chap. III. the area within the walls = $554.4 \times 403.92 \times .7854 = 223933.248 \times .7854 =$ 175877.1729792 ft. = 4 A. 0 R. 6 P. The area to the outside = $\frac{1670.2}{3} \times \frac{1218.76}{3} \times .7854 = \frac{2035572.952}{9} \times .7854 = \frac{1598738.9965008}{9} = 177637.6662778$ feet. Therefore 177637.666 — 175877.173 = 1760.493 = area the wall stands upon.

QUESTION 5.

Here the area of an ellipse whose diameters are 3 and 2 is 4.7124. Then, since similar figures are as the squares of their like dimensions, we have, As 4.7124:160::9:305.5768 = square of the longer diameter; consequently $\sqrt{305.5768} = 17.481 = \text{longer diameter}$; and 3:2::17.481:11.654 = shorter diameter.

QUESTION 6.

Find the area of the triangle whose sides are 9, 8, and 6; thus, $\frac{9+8+6}{2}=11.5$, and $\sqrt{11.5\times2.5\times3.5\times5.5}=\sqrt{553.4375}=23.525$ square perches. Also, 6 A. 1 R. 12 P. = 1012 P., and 23.525: 1012: 8²: 2753.1562 = square of the second side; therefore $\sqrt{2753.1562}=52.47$. Also,

8:9::52.47:59.029 = longest side. 8:6::52.47:39.353 = shortest side.

CHAP. VI.] MISCE	LLANEOUS QUESTIONS.	69						
QUESTION 7. (Pl. 4, fig. 2.)								
To find ABC:								
AB	27.85	1						
BC	31.15	j						
CA	<u>38.00</u> 2)96.50							
Half sum	48.25 1.68350							
Han Sum								
Damain Jama	(20.90 1.32015	į						
Remainders	17.10 1.23300							
	10.25 1.01072	.						
	2)5.24737							
ABC 420.418	2.62368							
To find ACE:								
AC	38.							
CE	40.10	1						
EA	22.20							
	2)100.30							
Half sum	50.15 1.70027							
	(12.15 1.08458							
Remainders	} 10.05 1.00217	l						
	(27.95 1.44638							
	2)5.23340							
ACE 413.71	2.61670							
To find CED:								
CE	40.10							
CD	23.70	-						
DE	29.25							
	2)93.05							
Half sum	46.525 1.66768							
i i	(6.425 0.80787							
Remainders	22.825 1.35841							
	(17.275 1.23741							
·	2)5.07137							
Remainders . CED 343.308	2.53568							

.

Hence the whole area = 420.418+413.71+343.308 = 1177.436 Ch. = 117 A. 2 R. 38.976 P.

QUESTION 8.

Construction.

Make AB (Pl. 4, fig. 3.) equal to half the given perimeter = 52, and bisect it in D; make DC perpendicular to AB and equal to the square root of the given area; with the centre C and radius equal to AD, describe an arc cutting AB in E, complete the rectangle AEFG and it will be the one required. The demonstration is evident from (Euclid xxvIII. 6.)

Calculation.

DE =
$$\sqrt{CE^2-CD^2}$$
 = $\sqrt{676-480}$ = $\sqrt{196}$ = 14.
AE = AD+DE = $26+14$ = 40, and EF = EB = $26-14$ = 12.

QUESTION 9.

Construction.

Draw any line AC, (Pl. 4, fig. 4.) and in it take AE = 20 = given difference; make EF perpendicular to AC = 20; join AF and produce it to B, making FB = 20; then will AB be a side of the square.

Demonstration.

Since EA = EF, the angles FAE and AFE are each equal to half a right angle, and AC must be the diagonal of the square. Again the triangles CEF and CBF are equal, since they are right angled at E and B, and have the hypothenuse and one leg in each equal: we have therefore CE = CB = CA-20.

Calculation.

 $AF = \sqrt{AE^2 + EF^2} = \sqrt{800} = 28.284$, and AB = AF + FB = 48.284; hence the area = $AB^2 = 2331.344656$ sq. per. = 14 A. 2 R. 11.34 P.

QUESTION 10.

Construction.

Let ABCD (Pl. 4, fig. 5.) be the given rectangle. In BA and BA produced take BH = BC, and AR = \(\frac{1}{4}\) AD. On BR describe the semicircle BPR, meeting DA produced in P; bisect AH in O, and with the centre O and radius OP, describe the semicircle EPQ, make AG = AQ, complete the rectangle AF, and the thing is done.

CHAP. VI.] MISCELLANEOUS QUESTIONS.

Demonstration.

 $AF = AE \times AG = AE \times AQ = AP^2 = AB \times AR = \frac{3}{4}AB \times AD = \frac{3}{4}AC$. Also, BE = BH - HE = BC - AQ = AD - AG = GD.

Calculation.

AO = $\frac{1}{2}$ AH = 10: AP² = AB× $\frac{3}{4}$ AD = 6000; therefore, OP = $\sqrt{AP^2 + OA^2}$ = $\sqrt{6100}$ = 78.1025; BE = BO—OE = 90—78.1025 = 11.8975.

QUESTION 11.

Construction.

Let ABD (Pl. 4, fig. 6.) be the given circle. Draw the diameter AB and radius CD perpendicular to it; take CF = ‡ AC; upon BF describe a semicircle cutting CD in E: with C as a centre and radius CE, describe the circle EGH, and the thing is done.

Demonstration.

CE is a mean proportional between CF and CB; hence CF: CB:: CE²: CB²:: 4:5; and since circles are as the squares of their radii, we have GEH = 4 ABD.

Calculation.

$$\sqrt{5}: \sqrt{4}:: AC (75): EC = \frac{75\sqrt{4}}{\sqrt{5}}$$

= $\frac{150\sqrt{5}}{5} = 30\sqrt{5} = 67.082$, and DE = DC—EC = 7.918.

QUESTION 12.

Construction.

With the given distances form the triangle ABC, (Pl. 4, fig. 7.) Upon AB describe the equilateral triangle ABD; join CD and on it describe the equilateral triangle CDE, which will be the one required.

Demonstration.

Since BD and BC are by construction two of the given distances; it is only necessary to prove that BE = AC, which is evident from the equality of the triangles DAC and DBE.

72	MISCEL	LANE	us	QUES	STIONS.	[Chap. VI.
		C-1.	ulatio			
					_	İ
In the tria	ngle ABC,	find the	angle	BAC, t	hus,	
BC	10					
AC	7.5 -				Ar. Co.	
AB	12.5				Ar. Co.	8.90309
	2)30.					į
	15 -					1.17609
	5 -					0.69897
					2)	19.90309
Cos.	BAC	. 26°	34′			9.95154
	BAC	53°	8'			
Then in the	e triangle l	DAC we	have	DA a	nd AC, a	and the angle
$DAC = 113^{\circ}$						
As DA-	+AC 20				Ar. Co.	8.69897
	A—ΛC 5				. .	0.69897
So is tan	$g.\frac{DCA+A}{2}$	ADC .	33° 9	26' -	• • •.	9.81968
m .	$\frac{DCA-A}{2}$	ADC	9° :	201		9.21762
To tang.	2		9-7			9.21702
	A	ACD -	42°	48 ′		
And,						
	ACD 42°				Ar. Co.	· · · · · · · · · · · · · · · · · · ·
	DAC 1	13° 8′				9.96360
So is A	D 12.5					1.09691
To DC	16.92 -			. 		1.22836
Then in C	DE we h	nave the	sides	ลทสิลเ	ngles to f	ind the area,
thus,	22, WO 1	10.10 1110	DIGOD			
As rad	dius		-		Ar. Co.	0.00000
	sin CDE	60° -	-			9.93753
So is	CD×DE	{ CD { DE				1.22836 1.22836
To 20	CDE	247.88				2.39425
	_		Ch. =	12 A.	1 R. 23.0	4 P.
		·				

ļ

QUESTION 13.

Construction.

With the given bearings and distances protract the figure ABCDfg, Pl. 4, fig. 8. Join Ag, and with the centres g and A, and distances equal to the 4th and 7th sides, describe arcs cutting in G. Join AG and gG, and draw DE, EF, and FG respectively parallel and equal to gG, Df, and fg. Then will ABCDEFG be the required map.

Calculation.

To find the bearing and distance of gA.

l						
	Bearing.	Dist.	N.	S.	E.	w.
AB	S. 72 W.	24.00		7.42		22.83
BC	North.	38.00	38.00			
CD	N. 82½ E.	41.00	5.35		40.65	
Df\	S. 80 E.	11.50		2.00	11.32	
fg	S. 26 W.	22.00		19.77		9.64
gA				(14.16)		(19.50)
			43.35	43.35	51.97	51.97

As diff. lat. 14.16	Ar. Co. 8.84894
Is to departure 19.50	
So is radius	10.00000
To tang. bearing gA S. 54° 1′ W	10.13897
A 91	

As radius	-	-	-	-	A:	r. C	0.	0.00000
Is to secant bearing 54°	1 ′	-	-	-	-	-	-	10.23096
So is diff. lat. 14.16 -	-	-	-	•	-	-	-	1.15106.
`To distance gA 24.10				_	_	_		1.98202

74	MISCE	LLAN	EOU	S Q	UE	STIONS	[CHAP. VI.		
In the triangle AGg we have the sides to find the angles AgG and GAg;									
Thus,	gG			Co.		8.69897			
		24.1)81.1	Ar.	Co.		8.61798			
Half	sum	40.55			-	1.60799			
Rem	ainder	3.55			2):	0.55023			
Cos. ½	AgG .				-	9.73758			
And, As AG	AgG :	113° 45′ =====				Ar Co:	8.43180		
Is to go So is sin	F 20 - n. AgG				•	A1. 00.	1.30103 9.96157		
	gAG 29°				-		9.69440		

Applying now the bearing of gA to these angles we will have the bearing of gG or DE = S. 59° 44′ E, and of GA = S. 83° 40′ W. The area will then be calculated as in the following table, viz.

CHAP. V	I.]	M	ISC	EL	LA	ΝE	οU	s (QUES	TI		s.		78	5
	S. Areas.		867.3117		763.5600	208.7000	2097.2734	240.8244	4177.6695 95.1588	2)4082,5107	4(0)204,1.2553	4)51,1.25 P.	12 A. 3 R. 1.25 P.		
	N. Areas.			95.1588						&	40	4	12 A. 3		
	Mult.		22.83 W.	17.82 E.	75.75 E.	104.35 E.	106.03 E.	59.61 E.							
	E.D. D. W. D. D.	59.61	22.83					46.42							
	E.D.D.			40.65	57.93	28.60	1.68								
	W.	22.83					9.64	36.78							
	Ei			40.65	17.28	11.32									
	zi	7.43			10.08	2.00	19.78	4.04							•
	N.		37.99	5.34						,					
	Cor.W.						•								
	Cor. S. Cor.W.	1	-	-			-	п							
	W.	22.83					9.64	36.78	69.25		•				
	Ë			40.65	17.28	11.32			69.25						
	zć	7.42			10.08	2.00	19.77	4.03	43.30						
	N.		38.00	5.35					43.35			, ·		٠	
	Dist.	24.00	38.00	41.00	20.00	11.50	22.00	37.00							
	Bearing.	S. 72 W.	North.	N. 824 E.	S. 594 E.	S. 80 E.	S. 26 W.	S. 83\frac{2}{4} W.							
	g Ž	AB	2	8	DE	EF	Ę.	В							

· · . .

QUESTION 14.

Construction.

Make AB, (Pl. 4, fig. 9.) = the given side, and divide it in D, so that AD may be to DB in the ratio of 3 to 2; in AB produced, take DO a fourth proportional to AD—DB, DB, and AD, and with the centre O and radius OD, describe the semicircle DCE; make AG perpendicular to AB, and equal to twice the area divided by AB = 6; through G draw GF parallel to AB, cutting the circle in C and F; join AC BC, AF and BF; then will ABC and ABF answer the conditions of the question.

Demonstration.

Since AD—DB: DB:: AD: DO, we have AD: DB:: AO: DO or AO: AD:: DO: DB, therefore, AO: DO:: DO: OB, consequently (Euclid, F. 6.) AC: BC:: AD: DB:: 3:2; and AF: BF: AD: DB:: 3:2.

Calculation.

As 3+2:15:3:AD=9, and DB = 6; also, 9—6:6::9:DO = 18, and AO = 9+18 = 27, join OC, and OF, and let fall the perpendiculars CL and FP; then OL = $\sqrt{\text{OC}^2-\text{CL}^2} = \sqrt{324-36} = \sqrt{288} = 16.9706$, and AL = AO—OL = 10.0294; hence AC = $\sqrt{\text{AL}^2+\text{LC}^2} = \sqrt{136.58886436} = 11.6871$; and as 3:2::11.6871: BC = 7.7914. Again AP = AO+OP = 43.9706, and AF = $\sqrt{\text{AP}^2+\text{PF}^2} = \sqrt{1969.41366436} = 44.3781$; and as 3:2::44.3781: BF = 29.5854

QUESTION 15.

Construction.

Make AB, (Pl. 4, fig. 10.) = the given side, and BL = the sum of the other sides; Bisect AB in D, and take DH a third proportional to 2 AB and BL; Draw HE perpendicular to BH and equal to $\frac{1600}{50} = 32$. Through E draw EF parallel and equal to BL; join EA and produce it to G, making FG = AB; draw AC parallel to FG, and join BC; then ABC is the triangle required.

Demonstration.

By Construction $BL^2 = 2 AB \times DH$; also, in the similar triangles EGF and EAC, we have GF (AB): AC:: EF (BL): EC (HP).

CHAP. VI.] MISCELLANEOUS QUESTIONS.	77							
Hence $BL \times AC = GF \times HI$ or $2BL \times AC = 2GF \times HP$. Subtracting these equals from the preceding, we have $BL^2 - 2BL \times AC = 2AB \times DH - 2GF \times HP = 2AB \times DP = (BP + AP) \times (BP - AP) = BP^2 - AP^2 = BC^2 - AC^2$. Hence $BL^2 - 2BL \times AC + AC^2 = BC^2$, and $BL - AC = BC$, or $BL = BC + AC$.	= =							
Calculation.								
As 2 AB (100): BL (85):: BL (85): DH = 72.25, and AH = DH—AD = 47.25. Now in the right angled triangle AHE, we have the sides AH and HE, to find HAE and AE; thus,								
As AH 47.25 Ar. Co. 8.32560								
Is to HE 32								
So is radius 10.00000								
To tang. HAE 34° 6½′ 9.83075								
And,								
As radius Ar. Co. 0.00000								
Is to sec. HAE 34° 6½′ 10.08198								
So is AH 1.67440								
To AE 57.07 1.75638,								
Now in the triangle GEF we have FE, FG, and the angle FE = HAE, to find FGE; thus,	G							
As FG 50 Ar. Co. 8.30103								
Is to FE 85 1.92942								
So is sin. GEF 34° 6½′ 9.74877								
To sin. FGE 72° 25' 9.97922								
Finally, in ACE we have AE and the angles to find AC; thus,								
As sin. ACE 73° 28½′ Ar. Co. 0.01832								
Is to sin. AEC 34° 6½′ 9.74877								
So is AE 1.75638								
To AC 33.3785 1.52347								
And BC = 85 - 33.3785 = 51.6215.								

Construction.

Make AC (Pl.4, fig.11.) = 50 = the given diagonal, and on it describe a semicircle ABC; make AE perpendicular to AC and = $\frac{1200}{50}$ = 24; draw EB parallel to AC, cutting the semicircle in B; join AB, BC, and draw CD and DA parallel to them; then will ABCD be the rectangle required.

Demonstration.

Since ABC is an angle in a semicircle, it is right, and ABCD is a rectangle. Also its area = $AC \times BF = 1200$ perches = $7\frac{1}{2}$ acres.

Calculation.

FG =
$$\sqrt{BG^3 - BF^2}$$
 = $\sqrt{49}$ = 7; AF = AG-GF = 18, and AB = $\sqrt{AF^2 + FB^2}$ = $\sqrt{900}$ = 30, BC = $\sqrt{AC^2 - AB^2}$ = $\sqrt{1600}$ = 40.

QUESTION 17.

Construction.

Make AB (Pl. 4, fig. 12.) = the square root of the given area, and draw CE perpendicular to it; draw BC, making ABC = 30°, make AE = AC; bisect AC in D, and draw EF perpendicular to CE and = ED. Complete the parallelogram CEFG, which will be the one required.

Demonstration.

Since the angle B = 30°, and A = 90°, BC = 2 AC = CE = 4 CD, and EF = ED = 3 CD; therefore FC = $\sqrt{EF^2 + EC^2}$ = 5 CD. Also AB² = BC² — AC² = $\frac{3}{4}$ BC² = $\frac{3}{4}$ EC² = EC × ED = EC × EF = CEFG.

Calculation.

Since $AB^2 = \frac{2}{3} CE^2$, $CE^2 = \frac{4}{3} AB^2 = \frac{4}{3}$ the given area = 784, and CE = 28; hence $EF = \frac{2}{3} EC = 21$.

QUESTION 18.

Construction.

With the given bearings and distances protract the figure ABCD, (Pl. 4, fig. 13.) and from B draw BP according to the given bearing

and distance of the spring. Produce DA and CB to meet in F, and through P draw EH parallel to AD. Bisect AF in G, join EG, and draw BM parallel to it, and MN parallel to FE. Make MT perpendicular to MN, and equal to the square root of the given area. Take MU a third proportional to MN and MT; draw UH parallel to MN, cutting AF in I; draw IK perpendicular to AF and equal to EP, and with the centre K and distance PH describe an arc cutting AD in Q; draw QPR, and the thing is done.

Demonstration.

In the similar triangles FGE and FMB, we have FB: FM:: FE: FG; therefore, 15.6, the triangle EFM = BFG; but EFM = ½ FMNE, and BFG = ½ BFA; hence FMNE = BFA. Again, because the triangles EPR, IQS; and PHS are similar, and the homologous sides EP (IK), IQ, and PH (KQ) form a right angled triangle, we have (Euclid 31. 6.) EPR+IQS=SPH. Add FISPE to each, and we have FQR = EFIH. But FBA = EFMN, hence BAQR = MNIH = MN.MU = MT² = the given area.

Calculation.

From the bearings of the lines the angles may be found as follow. $AFB = BEP = 23^{\circ}$, $ABF = 84^{\circ}$ 30', $BAF = 72^{\circ}$ 30', $EBP = 145^{\circ}$ 30', and $EPB = 11^{\circ}$ 30'. Then, in the triangle EBP we have all the angles and side BP, to find EP and EB;

Thus,			
As sin. BEP 23°	1	Ar. Co.	0.40812
Is to sin. EBP 145° 30'			
So is BP 7.90			0.89763
To EP 11.452			1.05888
And,			
As sin. BEP			
Is to sin. BPE 11° 30′	<u> </u>		
	<u> </u>		

80		MISC	ELLA	NE	ous	QI	JES	STIO	NS.	[Снар	. VI.
	lso, in the		-	F, all	the	angl	les a	and s	ide A	AB are gi	ven,
T	hus,				•						
	As sin.	AFB :	23° -		-		-	Ar.	Co.	0.40812	
•	Is to sir	. BAF	' 72° 8	30' -	-		-		-	9.97942	
	So is A	B 15.2	20 -		-		-	. -	-	1.18184	
	To B	F 37.1	01 -	• -	-		•		•	1.56938	
A	nd,										
	As sin.				-		-	Ar.	Co.	0.40812	
	Is to sir	. ABF	' 84° 3	30′ -	-		-			9.99800	
	So is A	В	•		-		-		•-	1.18184	
	To A	F 38.7	22 -		•		-		.•	1.58796	
		$\mathbf{E} = \mathbf{F}\mathbf{F}$	BE	= 33	.07, a	and I	FG :	= ½ A	F=	19.361;	
A	lso,			•					_		
	As EF				-		•	Ar.	Co.		
•	Is to G				-		•		-	1.28693	.
	So is B	F 37.1	.01 -		-	-i	-		-	1.56938	
	To FM	21.72	1 -		-		-		-	1.33688	
		-	_							FE = 3	
	'hus,	F = 23	, and	tne an	rea =	= 100	squ	iare o	nam	s, to find	MII;
		aim T	M/NT	(M	N 3	3.07	-	·Ar.	Co.	8.48057	
	As MN	, 8111. 1	MITA	{ sir	ı. IM	IN s	23°	Ar.	Co.	0.40812	
	Is to ra	dius -			-		•		. -	10.00000	
	So is M	IIHN		٠.	-		-		-	2.00000	
	To MI	7.739			•		-	- '-	•	0.88869	
Т	'herefore	PH =	EH-	- EP :	$= \mathbf{F}$	$\mathbf{M} + \mathbf{I}$	MI -	_EP	= 1	8.008.	Now.
in tl	he right a	ngled	triangl	e IK(Q, w	e ha				= 11.452,	
VA	= PH =			-							
		-	-KI = -KI =			log.		1.46 0.81		•	
		_					2	2.28	587	•	
		IQ =	13.898	•	•		•	1.14	293		
	Hence .	AQ = 1	FQ—	FA ≐	= FN	I+M	[]+	IQ—	FA	= 4.636.	
				-					نصم		

.

QUESTION 19.

Construction.

With the given bearings and distances, protract the figure ABCD, (Pl. 4, fig. 14;) then, by Prob. 17, Chap. IV. divide ABCD into two equal parts by the line EF, parallel to CD; also, by the same problem, divide ABCD, and EBAF, each into two equal parts by the lines OM and PN, parallel to AD; join MN, produce it to I, and draw OH parallel to IM; join IH, then will EF and IH be the division lines required.

Demonstration.

Because PN is parallel to OM, we have IN: NM:: IP: PO:: IG: GH, because NG is parallel to HM; therefore, PG is parallel to OH, and consequently to IM. Now since OH is parallel to IM, we have IHM = IOM, to each add AIMD, and AIHD = AOMD = \frac{1}{2} ABCD. In the same manner it may be shown that AIGF = \frac{1}{2} ABEF = \frac{1}{2} ABCD.

Calculation.

Draw EK and IL, each parallel to AD, and MU parallel to AB. From the given bearings find the angle $A = 78^{\circ}$ 30', $B = 139^{\circ}$ 45', $C = 78^{\circ}$ 45', and $D = 63^{\circ}$. By Prob. 17, Chap. IV., find EF and AF, thus,

As sin. C. sin. D	sin. C 78° 45′ sin. D 63° -	Ar. Co.	0.00843
Is to sin. A. sin. B	(sin. A 78° 30′ -	Ar. Co.	9.99119 9.81032
So is AB	AB 23 AB		
CD ^a	383.282	• • • ·	2.58352
'-	$\frac{2544.6021}{1272.3010} = 35.67$		

82 MISCELLANEOUS QUESTIONS. [CHAP. VI.
And, As sin. P 38° 15' Ar. Co. 0.20824
Is to sin. E 78° 45' 9.99157
So is CD—EF 10.82 1.03423
To FD - 17.14 1.23404
AD 49.64
AF 82.50
Then in the triangle ECK, we have the angles and side EK = FD, to find EC, thus,
As sin. C 78° 45' Ar. Co. 0.00843
Is to sin. K. 63° 9.94988
So is EK 17.14 1.23404
To CE 15.57 1.19235
Consequently BE = BC—CE = 14.93. Now by the same problem find OM, AO, PN and AP, thus,
As sin. A. sin. D $\begin{cases} \sin. A & Ar. \text{ Co. } 0.00881 \\ \sin. D & Ar. \text{ Co. } 0.05012 \end{cases}$
Is to sin. B. sin. C $\begin{cases} \sin B 9.81032 \\ \sin C 9.99157 \end{cases}$
So is BC ³ (BC 30.50 1.48430 (BC 1.48430
•
To fourth term 675.18 2.82942 AD ² 2464.1296 ====================================
2)3139.3096
$OM = \sqrt{1569.6548} = 39.62$
And,
As sin. P 38° 30′ Ar. Co. 0.20585
Is to sin. D 9.94988
So is AD—OM 10.02 1.00087
To AO 14.84 1.15860

CHAP. VI.] MISCELLANEOUS QUESTIONS.	83
	-
And,	
As sin. A. sin. F $\begin{cases} \sin. A Ar. Co. 0.00881 \\ - F \end{cases}$	
As sint A sint F sin. F Ar. Co. 0.05012 sin. B 9.81032	
Is to sin. B. sin. E $\begin{cases} \sin B & -1 & -1 & -1 & -1 & -1 & -1 \\ \sin E & -1 & -1 & -1 & -1 & -1 \end{cases}$	1
(BE 14.93 1.17406	1
So is BE ³ {BE 1.17406	
To Fourth term 161.79 2.20894	
AF ² 1056.25	
2)1218.04	
PN $\sqrt{609.02} = 24.68$.	
And,	
As sin. P 38° 30′ Ar. Co. 0.20585	
Is to sin. F 9.94988	
So is AF—PN 7.82 0.89321	
To AP 11.19 1.04894	
Hence $OP = AO - AP = 3.15$; wherefore we have	
OM-PN (14.94): PN (24.68):: OP (3.15): IP = 5.20; and A	=I.
AP-IP = 5.99.	
In the triangle MUL we have the angle $U = A$, $L = D$, and $MU = IO = IP + PO = 8.35$, to find ML and UL; thus,	side
As sin. ULM 63° Ar. Co. 0.05012	•
As sin. CLM 63 Ar. Co. 0.03012 Is to sin. MUL 78° 30′ 9.99119	
So is MU 8.35 0.92169	
To ML 9.18 0.96300	
10 MT 8:10 0:90300	
And,	
As sin. MLU 63° Ar. Co. 0.05012	
Is to sin. UML 38° 30' 9.79415	
So is MU 8.35 0.92169	
To UL 5.83 0.76596	

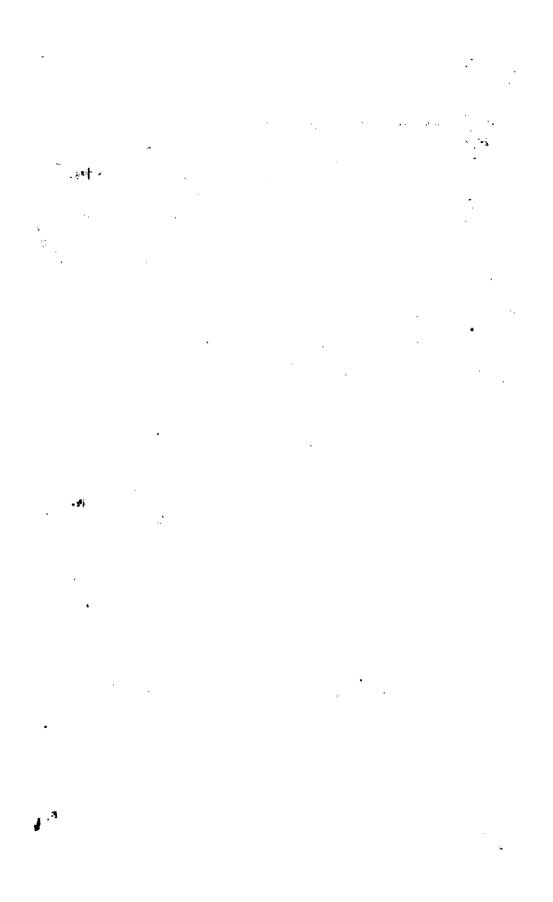
Therefore IL = IU + UL = OM + UL = 45.45, and from the similar triangles ILM and OMH, we have

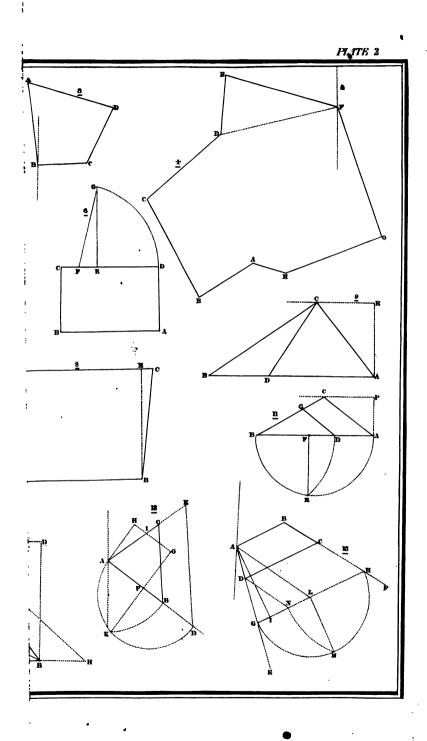
As IL (45.45): LM (9.18):: OM (39.62): MH = 8.

Now, in the triangle ILH, we have the angle L = D, and sides IL and LH = LM + MH = 17.18, to find the angle LIH; thus,

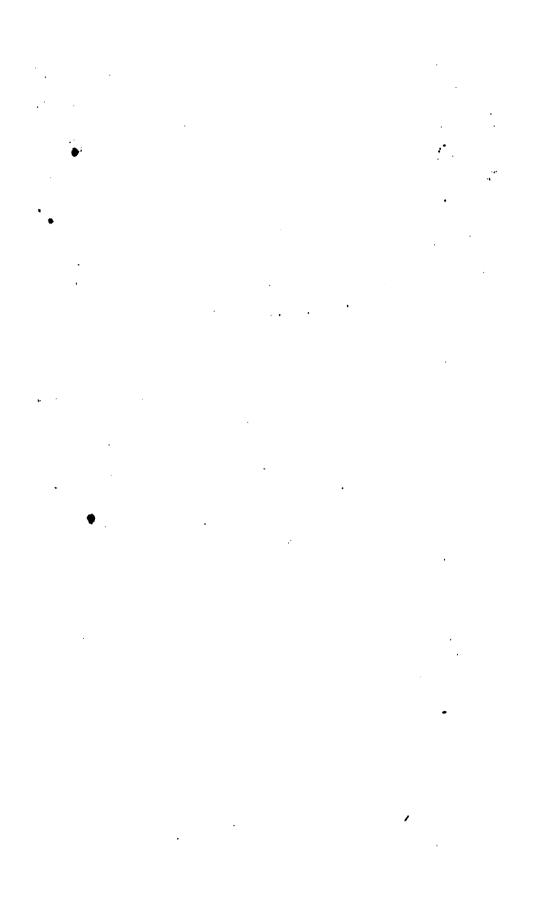
As LI+LH 62.63 - - - - - Ar. Co. 8.20322 Is to LI—LH 28.27 - - - - - 1.45133

So is tang. $\frac{LHI + LIH}{2}$ - 58° 30′ - - - 10.21268


To tang. LHI—LIH - 36 23 - - - 9.86723


LIH - - - 22 7

Bearing IL - - 66 15


" IK - S. 88 22 E.

THE END.

: : ·

1 • • 4 . • • ×. . •

BOOKS PUBLISHED BY KIMBER & SHARPLESS, NO. 50, NORTH FOURTH STREET, PHILADELPHIA.

- QUARTO FAMILY BIBLES; in great variety—the materials and manufacture of which are such that the publishers can recommend them with confidence to Booksellers, Bible Associations, and others, who wish to obtain a good article at a low price.
- GUMMERE'S ASTRONOMY, new edition, enlarged and improved. This work has been adopted as a text-book in many of the Colleges in the United States.
- GUMMERE'S SURVEYING, Fourteenth edition; to which are added—Articles on the Theodolite, Levelling, and Topography.
- KEY TO GUMMERE'S SURVEYING—in which the operations of all the Examples not solved in that work are exhibited at large. Principally designed to facilitate the labour of Teachers, and to assist those who have not the opportunity of their instruction. By Samuel Alsop.
- BONNYCASTLE'S MENSURATION Improved by Benjamin Hallowell: containing also a Treatise on Gauging,—and the most important Problems in Mechanics, by James Ryan.
- KEY TO BONNYCASTLE'S MENSURATION, containing solutions of all the questions not solved in that work. By Benjamin Hallowell.
- I.EWIS'S ALGEBRA, containing the most useful parts of that science, illustrated by a copious collection of Examples. Designed for the use of Schools.
- KEY TO LEWIS'S ALGEBRA, in which solutions are given of the most difficult questions contained in that work.
- LEWIS'S ARITHMETIC, containing the theory and practice of the science; illustrated by an extensive collection of Examples suited to the commerce of the United States.
- BLAIR'S PHILOSOPHY, for the use of Schools. Revised and enlarged by Benjamin Hallowell.
- GRÆCA MAJORA. Stereotyped edition. 2 vols. octavo.
- JOHNSON'S DICTIONARY, improved by Todd, with Walker's Pronouncing Dictionary combined: to which is added Walker's Key to the Classical Pronunciation of Greek, Latin, and Scripture Proper Names. This work contains upwards of 1150 octavo pages, comprising a great mass of critical and useful information, and is believed to be one of the cheapest and best books of reference on the subject of our language.
- GUMMERE'S GEOGRAPHY. For the use of Schools.
- BLAIR'S READING EXERCISES.
- COMLY'S PRIMER.
- COMLY'S GRAMMAR. Half-bound, or bound and lettered.
- COMLY'S SPELLING-BOOK. New edition—to which is added an Introduction to English Grammar, on the Inductive plan, by Enoch Lewis.

 The Spelling-Book may be had as heretofore, without the Grammar; and the Grammar is also printed separately, for the use of Primary Schools.

BOOKS PUBLISHED BY KIMBER & SHARPLESS.

GUMMERE'S PROGRESSIVE SPELLING-BOOK. In Two Parts—containing a great variety of useful exercises in Spelling, Pronunciation, and Derivation, including extensive Tables of Words deduced from their Greek and Latin Roots.

Part I. is also printed on a larger type, and bound separately, for the use of beginners.

In the compilation of the *Progressive Spelling-Book*, an attempt has been made so to arrange the exercises as to conduct the learner, by gradual and easy steps, to a more accurate and thorough knowledge of the Orthography and Etymology of our language than can be acquired from the books in common use.

The first part contains a regular and easy gradation of lessons in spelling, consisting of words of one and two syllables only, classed according to the number of letters in a syllable, and arranged according to their vowel sounds. These lessons in spelling are interspersed with reading lessons, constructed of words which have occurred in some of the previous spelling lessons; so that if the child become familiar with the words in spelling, he will find little difficulty, it is believed, in pronouncing them correctly, and at sight, in reading. Miscellaneous reading lessons are given, at the close of the first part, containing no words of more than two syllables, and none of them difficult; but some of them not to be found in the preceding pages.

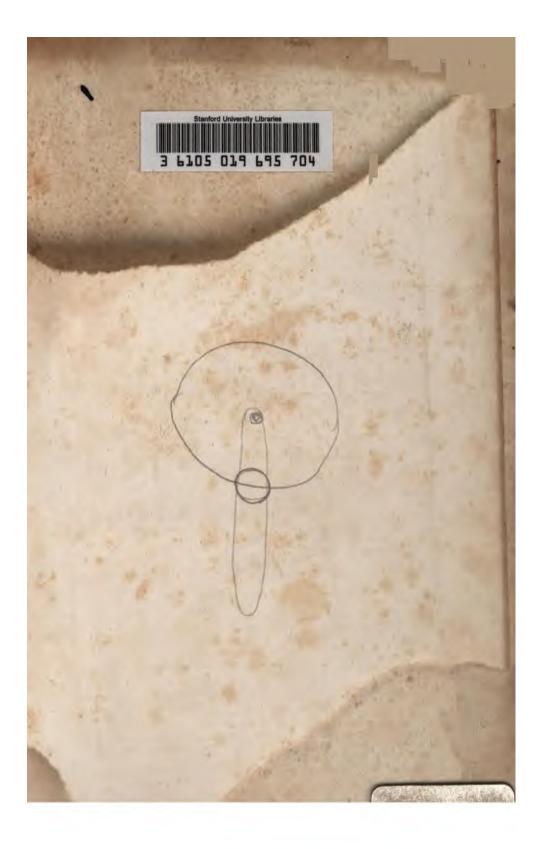
The second part contains a greater variety of exercises in spelling and pronunciation than can be found in any of the Spelling-Books now in use in this country. We have first a large collection of easy words of three or more syllables, arranged according to the seat of the accent; next follow difficult and irregular words, including a large number of those in which the pronunciation differs materially from the spelling, arranged according to the vowel sounds in the accented syllables. By this plan, the pronunciation is indicated with sufficient clearness, without the introduction of figures and other signs, which children seldom, or never, understand, and which, therefore, serve only to perplex them, and deface the page. These exercises are succeeded by others both in spelling and pronunciation, which afford the teacher the means of pointing out to his pupils some of the greatest anomalies in our language, at the same time that they are acquiring much other valuable information. Amongst these are an extensive collection of words sounded exactly alike,—several tables of those sounded nearly alike,—a great number of words having different significations according to the scat of the accent, and which are often mispronounced from inattention to this circumstance,—tables of words spelled alike but pronounced differently,—and an extensive collection of equivocal words, or those which are employed under different circumstances to express very different ideas: all which are best learned and remembered by being associated with their meanings, and are therefore briefly but clearly defined.

A very important division of the second part is that exhibiting the derivation of several thousand English words from their Latin and Greek roots, arranged and defined as in the following example:

Caput, capitis, the head.

Cap'ital. Chief, principal.
Capita'tion. Counting by heads.
Cape. A headland.
Cap'tain. A chief commander.
Chap'ter. A division or head.
Decap'itate. To behead.
Oc'ciput. The hinder part of the head.

Precip'itate. v. To tumble headlong, to hurry.


Precip'itate. a. Headstrong, hasty.

Precip'itate. n. A sediment.

Prec'ipice. A headlong steep.

Recapit'ulate. To repeat the heads of a discourse.

To those pupils who are not to receive a classical education, this part of the work will be of great service. It will show them how many of the important words in their own language, are derived from those of Greece and Rome, and give them a much clearer idea of the meaning of such words, than they would otherwise acquire. Even those who are subsequently to study the Latin and Greek will find their labour lightened by their previous knowledge of many of the most useful words in those languages.

